Skip to main content
Log in

Feasibility and availability of 68Ga-labelled peptides

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

68Ga has attracted tremendous interest as a radionuclide for PET based on its suitable half-life of 68 min, high positron emission yield and ready availability from 68Ge/68Ga generators, making it independent of cyclotron production. 68Ga-labelled DOTA-conjugated somatostatin analogues, including DOTA-TOC, DOTA-TATE and DOTA-NOC, have driven the development of technologies to provide such radiopharmaceuticals for clinical applications mainly in the diagnosis of somatostatin receptor-expressing tumours. We summarize the issues determining the feasibility and availability of 68Ga-labelled peptides, including generator technology, 68Ga generator eluate postprocessing methods, radiolabelling, automation and peptide developments, and also quality assurance and regulatory aspects. 68Ge/68Ga generators based on SnO2, TiO2 or organic matrices are today routinely supplied to nuclear medicine departments, and a variety of automated systems for postprocessing and radiolabelling have been developed. New developments include improved chelators for 68Ga that could open new ways to utilize this technology. Challenges and limitations in the on-site preparation and use of 68Ga-labelled peptides outside the marketing authorization track are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Deutsch E. Clinical PET: its time has come? J Nucl Med. 1993;34:1132–3.

    PubMed  CAS  Google Scholar 

  2. Maecke HR, Hofmann M, Haberkorn U. (68)Ga-labeled peptides in tumor imaging. J Nucl Med. 2005;46 Suppl 1:172S–8S.

    PubMed  CAS  Google Scholar 

  3. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.

    Article  PubMed  CAS  Google Scholar 

  4. Hofmann M, Maecke H, Borner R, Weckesser E, Schoffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28:1751–7.

    Article  PubMed  CAS  Google Scholar 

  5. Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, et al. PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med. 2001;42:1053–6.

    PubMed  CAS  Google Scholar 

  6. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.

    Article  PubMed  CAS  Google Scholar 

  7. Meinken GE, Kurczak SM, Kolsky KL, Srivastava SC. Production of high specific activity 68Ge at Brookhaven National laboratory. J Radioanal Nucl Chem. 2005;263:553–7.

    CAS  Google Scholar 

  8. Gleason GI. A positron cow. Int J Appl Radiat Isot. 1960;8:90–4.

    Article  PubMed  CAS  Google Scholar 

  9. Yano Y, Anger HO. A gallium-68 positron cow for medical use. J Nucl Med. 1964;5:484–7.

    PubMed  CAS  Google Scholar 

  10. Mirzadeh S, Lambrecht R. Radiochemistry of germanium. J Radioanal Nucl Chem. 1996;202:7–102.

    Article  CAS  Google Scholar 

  11. Roesch F, Riss PJ. The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem. 2010;10:1633–68.

    PubMed  CAS  Google Scholar 

  12. Fani M, Andre JP, Maecke HR. 68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging. 2008;3:67–77.

    Article  PubMed  Google Scholar 

  13. Loc’h C, Maziere B, Comar D. A new generator for ionic gallium-68. J Nucl Med. 1980;21:171–3.

    PubMed  Google Scholar 

  14. de Blois E, Sze Chan H, Naidoo C, Prince D, Krenning EP, Breeman WA. Characteristics of SnO2-based 68Ge/68Ga generator and aspects of radiolabelling DOTA-peptides. Appl Radiat Isot. 2011;69:308–15.

    Article  PubMed  Google Scholar 

  15. Razbash AA. A simple gallium-68 generator. Eur J Nucl Med Mol Imaging. 2003;30 Suppl 2:S318.

    Google Scholar 

  16. Bao B, Song MA. New 68Ge/68Ga generator based on CeO2. J Radioanal Nucl Chem. 1996;213:233–8.

    Article  CAS  Google Scholar 

  17. Chakravarty R, Shukla R, Ram R, Tyagi AK, Dash A, Venkatesh M. Development of a nano-zirconia based 68Ge/68Ga generator for biomedical applications. Nucl Med Biol. 2011;38:575–83.

    Article  PubMed  CAS  Google Scholar 

  18. Schuhmacher J, Maier-Borst W. A new 68Ge/68Ga radioisotope generator system for production of 68Ga in dilute HCl. Int J Appl Radiat Isot. 1981;32:31–6.

    Article  CAS  Google Scholar 

  19. Zhernosekov K, Harfensteller M, Moreno J, Leib O, Buck O, Tuerler A, et al. Development of a novel metal-free 68Ge/68Ga radionuclide generator system. Eur J Nucl Med Mol Imaging. 2010;37 Suppl 2:S251.

    Google Scholar 

  20. Zhernosekov KP, Filosofov DV, Baum RP, Aschoff P, Bihl H, Razbash AA, et al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007;48:1741–8.

    Article  PubMed  CAS  Google Scholar 

  21. Breeman WA, de Jong M, de Blois E, Bernard BF, Konijnenberg M, Krenning EP. Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging. 2005;32:478–85.

    Article  PubMed  CAS  Google Scholar 

  22. Loktionova NS, Rösch F. Separation of 68Ga and 68Ge on TLC plate. World J Nucl Med. 2011;10:80

    Google Scholar 

  23. ICRP. Limits for Intakes of Radionuclides by Workers. ICRP Publication 30 (Part 3). Ann ICRP. 6 (2-3).

  24. Konijnenberg M, Breeman WA (2009) Estimates for the biodistribution and dosimetry of 68Ge in 68Ga PET imaging. J Lab Comp Radiopharm 52 Suppl 1:S116.

    Google Scholar 

  25. Rosenfeld G. Studies of the metabolism of germanium. Arch Biochem Biophys. 1954;48:84–94.

    Article  PubMed  CAS  Google Scholar 

  26. Mehard CW, Volcani BE. Similarity in uptake and retention of trace amounts of 31 silicon and 68 germanium in rat tissues and cell organelles. Bioinorg Chem. 1975;5:107–24.

    Article  PubMed  CAS  Google Scholar 

  27. Sabbioni E, Fortaner S, Bosisio S, Farina M, Del Torchio R, Edel J, et al. Metabolic fate of ultratrace levels of GeCl(4) in the rat and in vitro studies on its basal cytotoxicity and carcinogenic potential in Balb/3T3 and HaCaT cell lines. J Appl Toxicol. 2010;30:34–41.

    Article  PubMed  CAS  Google Scholar 

  28. Ando A, Ando I, Hiraki T, Hisada K. Relation between the location of elements in the periodic table and various organ-uptake rates. Int J Rad Appl Instrum B. 1989;16:57–80.

    PubMed  CAS  Google Scholar 

  29. Shearer DR, Pezzullo JC, Moore MM, Coleman P, Frater SI. Radiation dose from radiopharmaceuticals contaminated with molybdenum-99. J Nucl Med. 1988;29:695–700.

    PubMed  CAS  Google Scholar 

  30. US Food and Drug Administration. FDA Drug Safety Communication: Increased radiation exposure due to undetected strontium breakthrough when using CardioGen-82 for cardiac positron emission tomography (PET) scans. US Food and Drug Administration; 2011. http://www.fda.gov/Drugs/DrugSafety/ucm263112.htm. Accessed 19 Nov 2011.

  31. Meyer GJ, Macke H, Schuhmacher J, Knapp WH, Hofmann M. 68Ga-labelled DOTA-derivatised peptide ligands. Eur J Nucl Med Mol Imaging. 2004;31:1097–104.

    Article  PubMed  CAS  Google Scholar 

  32. Velikyan I, Beyer GJ, Langstrom B. Microwave-supported preparation of (68)Ga bioconjugates with high specific radioactivity. Bioconjug Chem. 2004;15:554–60.

    Article  PubMed  CAS  Google Scholar 

  33. Decristoforo C, Knopp R, von Guggenberg E, Rupprich M, Dreger T, Hess A, et al. A fully automated synthesis for the preparation of 68Ga-labelled peptides. Nucl Med Commun. 2007;28:870–5.

    Article  PubMed  CAS  Google Scholar 

  34. Petrik M, Ocak M, Rupprich M, Decristoforo C. Impurity in (68)Ga-peptide preparation using processed generator eluate. J Nucl Med. 2010;51:495; author reply 495−6.

    Article  PubMed  Google Scholar 

  35. Müller D, Klette I, Baum RP. A new high efficient NaCl base cationic 68Ge/68Ga generator eluate purification. World J Nucl Med. 2011;10:77.

    Google Scholar 

  36. Bauwens M, Chekol R, Vanbilloen H, Bormans G, Verbruggen A. Optimal buffer choice of the radiosynthesis of (68)Ga-Dotatoc for clinical application. Nucl Med Commun. 2010;31:753–8.

    Article  PubMed  CAS  Google Scholar 

  37. Asti M, De Pietri G, Fraternali A, Grassi E, Sghedoni R, Fioroni F, et al. Validation of (68)Ge/(68)Ga generator processing by chemical purification for routine clinical application of (68)Ga-DOTATOC. Nucl Med Biol. 2008;35:721–4.

    Article  PubMed  CAS  Google Scholar 

  38. Ocak M, Antretter M, Knopp R, Kunkel F, Petrik M, Bergisadi N, et al. Full automation of (68)Ga labelling of DOTA-peptides including cation exchange prepurification. Appl Radiat Isot. 2010;68:297–302.

    Article  PubMed  CAS  Google Scholar 

  39. Cagnolini A, Chen J, Ramos K, Skedzielewski TM, Lantry LE, Nunn AD, et al. Automated synthesis, characterization and biological evaluation of [(68)Ga]Ga-AMBA, and the synthesis and characterization of (nat)Ga-AMBA and [(67)Ga]Ga-AMBA. Appl Radiat Isot. 2010;68:2285–92.

    Article  PubMed  CAS  Google Scholar 

  40. Petrik M, Knetsch P.A, Knopp R, Imperato G, Ocak M, von Guggenberg E, et al. Radiolabelling of peptides for PET, SPECT and therapeutic applications using a fully automated disposable cassette system. Nucl Med Commun. 2011;32:887–95.

    Article  PubMed  Google Scholar 

  41. Velikyan I, Maecke H, Langstrom B. Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. Bioconjug Chem. 2008;19:569–73.

    Article  PubMed  CAS  Google Scholar 

  42. Notni J, Hermann P, Havlickova J, Kotek J, Kubicek V, Plutnar J, et al. A triazacyclononane-based bifunctional phosphinate ligand for the preparation of multimeric 68Ga tracers for positron emission tomography. Chemistry. 2010;16:7174–85.

    PubMed  CAS  Google Scholar 

  43. Rosch F, Baum RP. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans. 2011;40:6104–11.

    Article  PubMed  Google Scholar 

  44. Fani M, Del Pozzo L, Abiraj K, Mansi R, Tamma ML, Cescato R, et al. PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference. J Nucl Med. 2011;52:1110–8.

    Article  PubMed  CAS  Google Scholar 

  45. Knetsch PA, Petrik M, Griessinger CM, Rangger C, Fani M, Kesenheimer C, et al. [68Ga]NODAGA-RGD for imaging αvβ3 integrin expression. Eur J Nucl Med Mol Imaging. 2011;38:1303–12.

    Article  PubMed  CAS  Google Scholar 

  46. Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.

    Article  PubMed  CAS  Google Scholar 

  47. Breeman WA, Verbruggen AM. The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging. 2007;34:978–81.

    Article  PubMed  Google Scholar 

  48. European Directorate for the Quality of Medicines. Gallium (68Ga) edotreotide injection. Pharmeuropa. 2011;23:310–2.

    Google Scholar 

  49. Hesselmann R, Johayem A, Özdemir U, Dragic M, Blainc A, Mu L, et al. Improving radiochemical purity and quality control of 68Ga-DOTATATE. World J Nucl Med. 2011;10:84.

    Google Scholar 

  50. Velikyan I, Beyer GJ, Bergstrom-Pettermann E, Johansen P, Bergstrom M, Langstrom B. The importance of high specific radioactivity in the performance of 68Ga-labeled peptide. Nucl Med Biol. 2008;35:529–36.

    Article  PubMed  CAS  Google Scholar 

  51. Serdons K, Verbruggen A, Bormans G. The presence of ethanol in radiopharmaceutical injections. J Nucl Med. 2008;49:2071.

    Article  PubMed  Google Scholar 

  52. The European Parliament and of the Council of the European Union. Directive 2004/27/EC of the European Parliament and the Council of 31 March 2004 amending Directive 2001/83/EC on the Community code relating to medicinal products for human use. Official Journal. L136;2004:34–57.

  53. Verbruggen A, Coenen HH, Deverre JR, Guilloteau D, Langstrom B, Salvadori PA, et al. Guideline to regulations for radiopharmaceuticals in early phase clinical trials in the EU. Eur J Nucl Med Mol Imaging. 2008;35:2144–51.

    Article  PubMed  CAS  Google Scholar 

  54. Decristoforo A, Penuelas I. Towards a harmonized radiopharmaceutical regulatory framework in Europe? Q J Nucl Med Mol Imaging. 2009;53:394–401.

    PubMed  CAS  Google Scholar 

  55. EudraLex. The rules governing medicinal products in the European Union. Volume 4: EU guidelines to good manufacturing practice medicinal products for human and veterinary use. Part II: basic requirements for active substances used as starting materials. http://ec.europa.eu/health/files/eudralex/vol-4/2007_09_gmp_part2_en.pdf 2005.

Download references

Acknowledgments

The assistance of Dr B.J. McParland with dosimetry calculations is acknowledged

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Decristoforo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Decristoforo, C., Pickett, R.D. & Verbruggen, A. Feasibility and availability of 68Ga-labelled peptides. Eur J Nucl Med Mol Imaging 39 (Suppl 1), 31–40 (2012). https://doi.org/10.1007/s00259-011-1988-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1988-5

Keywords

Navigation