Skip to main content

Advertisement

Log in

Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Erratum to this article was published on 16 December 2011

Abstract

Purpose

To identify the neurobiological traits of amyotrophic lateral sclerosis (ALS) and to elucidate functional differences between ALS of spinal and bulbar onset. We hypothesized that glucose metabolism distribution might vary between groups.

Methods

The study groups comprised 32 patients with ALS of either bulbar (n = 13) or spinal (n = 19) onset and 22 subjects as controls. They were investigated by [18F]fluorodeoxyglucose (FDG) positron emission tomography (FDG PET), comparing the patient groups with each other and with the controls by statistical parametric mapping.

Results

Highly significant relative increases in glucose metabolism distribution were found in the group comprising all 32 ALS patients as compared with the controls in the bilateral amygdalae, midbrain, pons and cerebellum. Relative hypermetabolism was also found in patients with spinal onset as compared with the controls in the right midbrain. In patients with bulbar onset compared with the controls and with patients with spinal onset, large relatively hypometabolic areas were found in the bilateral frontal cortex, right insula, anterior cingulate, precuneus and inferior parietal lobe. Patients with spinal onset had significantly higher scores in a neuropsychological test assessing verbal fluency compared with patients with bulbar onset.

Conclusion

This large FDG PET investigation provided unprecedented evidence of relatively increased metabolism in the amygdalae, midbrain and pons in ALS patients as compared with control subjects, possibly due to local activation of astrocytes and microglia. Highly significant relative decreases in metabolism were found in large frontal and parietal regions in the bulbar onset patients as compared with the spinal onset patients and the controls, suggesting a differential metabolic and neuropsychological state between the two conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1:293–9.

    Article  PubMed  CAS  Google Scholar 

  2. Chiò A, Mora G, Calvo A, Mazzini L, Bottacchi E, Mutani R, et al. Epidemiology of ALS in Italy: a 10-year prospective population-based study. Neurology. 2009;72:725–31.

    Article  PubMed  Google Scholar 

  3. Leigh PN, Kew JJM, Goldstein LH, Brooks DJ. The cerebral lesions in amyotrophic lateral sclerosis: new insights from pathology and functional brain imaging. In: Rose C, editor. Amyotrophic lateral sclerosis from Charcot to the present and into the future. London: Smith-Gordon; 1994. p. 191–209.

    Google Scholar 

  4. Talbot PR, Goulding PJ, Lloyd JJ, Snowden JS, Neary D, Testa HJ. Inter-relation between ‘classic’ motor neuron disease and frontotemporal dementia: neuropsychological and single photon emission computed tomography study. J Neurol Neurosurg Psychiatry. 1995;58:541–7.

    Article  PubMed  CAS  Google Scholar 

  5. Geser F, Brandmeir NJ, Kwong LK, Martinez-Lage M, Elman L, McCluskey L, et al. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol. 2008;65:636–41.

    Article  PubMed  Google Scholar 

  6. Gallassi R, Montagna P, Morreale A, Lorusso S, Tinuper P, Daidone R, et al. Neuropsychological, electroencephalogram and brain computed tomography findings in motor neuron disease. Eur Neurol. 1989;29:115–20.

    Article  PubMed  CAS  Google Scholar 

  7. Ludolph AC, Langen KJ, Regard M, Herzog H, Kemper B, Kuwert T, et al. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand. 1992;85:81–9.

    Article  PubMed  CAS  Google Scholar 

  8. Iwasaki Y, Kinoshita M, Oceda K, Takamiya K, Shiojima T. Cognitive impairment in amyotrophic lateral sclerosis and its relation to motor disabilities. Acta Neurol Scand. 1990;81:141–3.

    Article  PubMed  CAS  Google Scholar 

  9. Kew JJM, Goldstein LH, Leigh PN, Abrahams S, Cosgrave N, Passingham RE, et al. The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis. A neuropsychological and positron emission tomography study. Brain. 1993;116:1399–423.

    Article  PubMed  Google Scholar 

  10. Abrahams S, Leigh PN, Kew JJ, Goldstein LH, Lloyd CM, Brooks DJ. A positron emission tomography study of frontal lobe function (verbal fluency) in amyotrophic lateral sclerosis. J Neurol Sci. 1995;129(Suppl):44–6.

    Article  PubMed  Google Scholar 

  11. Abe K, Fujimura H, Toyooka K, Sakoda S, Yorifuji S, Yanagihara T. Cognitive function in amyotrophic lateral sclerosis. J Neurol Sci. 1997;148:95–100.

    Article  PubMed  CAS  Google Scholar 

  12. Abrahams S, Goldstein LH, Suckling J, Ng V, Simmons A, Chitnis X, et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J Neurol. 2005;252:321–31.

    Article  PubMed  Google Scholar 

  13. Andreadou E, Sgouropoulos P, Varelas P, Gouliamos A, Papageorgiou C. Subcortical frontal lesions on MRI in patients with motor neurone disease. Neuroradiology. 1998;40:298–302.

    Article  PubMed  CAS  Google Scholar 

  14. Kato S, Hayashi H, Yagishita A. Involvement of the frontotemporal lobe and limbic system in amyotrophic lateral sclerosis: as assessed by serial computed tomography and magnetic resonance imaging. J Neurol Sci. 1993;116:52–8.

    Article  PubMed  CAS  Google Scholar 

  15. Peavy GM, Herzog AG, Rubin NP, Mesulam M-M. Neuropsychological aspects of dementia of motor neuron disease: a report of two cases. Neurology. 1992;42:1004–8.

    PubMed  CAS  Google Scholar 

  16. Hudson AJ. Amyotrophic lateral sclerosis and its association with dementia, parkinsonism and other neurological disorders: a review. Brain. 1981;104:217–47.

    Article  PubMed  CAS  Google Scholar 

  17. Dalakas MC, Hatazawa J, Brooks RA, Di Chiro G. Lowered cerebral glucose utilization in amyotrophic lateral sclerosis. Ann Neurol. 1987;22:580–6.

    Article  PubMed  CAS  Google Scholar 

  18. Hatazawa J, Brooks RA, Dalakas MC, Mansi L, Di Ghiro G. Cortical moto-sensory hypometabolism in amyotrophic lateral sclerosis: a PET study. J Comput Assist Tomogr. 1988;12:630–6.

    Article  PubMed  CAS  Google Scholar 

  19. Le Forestier N, Maisonobe T, Spelle L, Lesort A, Salachas F, Lacomblez L, et al. Primary lateral sclerosis: further clarification. J Neurol Sci. 2001;185:95–100.

    Article  PubMed  Google Scholar 

  20. Turner MR, Hammers A, Al-Chalabi A, Shaw CE, Andersen PM, Brooks DJ, et al. Cortical involvement in four cases of primary lateral sclerosis using [(11)C]-flumazenil PET. J Neurol. 2007;254:1033–6.

    Article  PubMed  Google Scholar 

  21. Claassen DO, Josephs KA, Peller PJ. The stripe of primary lateral sclerosis: focal primary motor cortex hypometabolism seen on fluorodeoxyglucose F18 positron emission tomography. Arch Neurol. 2010;67:122–5.

    Article  PubMed  Google Scholar 

  22. Strong MJ, Grace GM, Freedman M, Lomen-Hoerth C, Woolley S, Goldstein LH, et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioral syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2009;10:131–46.

    Article  Google Scholar 

  23. Bennett CM, Wolford GL, Miller MB. The principled control of false positives in neuroimaging. Soc Cogn Affect Neurosci. 2009;4:417–22.

    Article  PubMed  Google Scholar 

  24. Yatham LN, Liddle PF, Lam RW, Zis AP, Stoessl AJ, Sossi V, et al. Effect of electroconvulsive therapy on brain 5-HT2 receptors in major depression. Br J Psychiatry. 2010;196:474–9.

    Article  PubMed  Google Scholar 

  25. Lloyd CM, Richardson MP, Brooks DJ, Al-Chalabi A, Leigh PN. Extramotor involvement in ALS: PET studies with the GABA(A) ligand [(11)C]flumazenil. Brain. 2000;123:2289–96.

    Article  PubMed  Google Scholar 

  26. Turner BJ, Lopes EC, Cheema SS. The serotonin precursor 5-hydroxytryptophan delays neuromuscular disease in murine familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:171–6.

    Article  PubMed  CAS  Google Scholar 

  27. Aquilonius SM, Jossan SS, Ekblom JG, Askmark H, Gillberg PG. Increased binding of 3H-L-deprenyl in spinal cords from patients with amyotrophic lateral sclerosis as demonstrated by autoradiography. J Neural Transm Gen Sect. 1992;89:111–22.

    Article  PubMed  CAS  Google Scholar 

  28. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci. 2008;11:251–3.

    Article  PubMed  CAS  Google Scholar 

  29. Yu I, Inaji M, Maeda J, Okauchi T, Nariai T, Ohno T, et al. Glial cell-mediated deterioration and repair of the nervous system after traumatic brain injury in a rat model as assessed by positron emission tomography. J Neurotrauma. 2010;27:1463–75.

    Article  PubMed  Google Scholar 

  30. Marik J, Ogasawara A, Martin-McNulty B, Ross J, Flores JE, Gill HS, et al. PET of glial metabolism using 2-18F-fluoroacetate. J Nucl Med. 2009;50:982–90.

    Article  PubMed  Google Scholar 

  31. Yokokura M, Mori N, Yagi S, Yoshikawa E, Kikuchi M, Yoshihara Y, et al. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2011;38:343–51.

    Article  PubMed  CAS  Google Scholar 

  32. Fukumoto D, Hosoya T, Nishiyama S, Harada N, Iwata H, Yamamoto S, et al. Multiparametric assessment of acute and subacute ischemic neuronal damage: a small animal positron emission tomography study with rat photochemically induced thrombosis model. Synapse. 2011;65:207–14.

    Article  PubMed  CAS  Google Scholar 

  33. Barros LF, Porras OH, Bittner CX. Why glucose transport in the brain matters for PET. Trends Neurosci. 2005;28:117–9.

    Article  PubMed  CAS  Google Scholar 

  34. Magistretti PJ. Cellular bases of functional brain imaging: insights from neuron-glia metabolic coupling. Brain Res. 2000;886:108–12.

    Article  PubMed  CAS  Google Scholar 

  35. Nehlig A, Coles J. Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes? Glia. 2007;55:1238–50.

    Article  PubMed  Google Scholar 

  36. Abe K, Fujimura H, Toyooka K, Hazama T, Hirono N, Yorifuji S, et al. Single-photon emission computed tomographic investigation of patients with motor neuron disease. Neurology. 1993;43:1569–73.

    PubMed  CAS  Google Scholar 

  37. Abrahams S, Leigh PN, Harvey A, Vythelingum GN, Grise D, Goldstein LH. Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia. 2000;38:734–47.

    Article  PubMed  CAS  Google Scholar 

  38. Abrahams S, Goldstein LH, Kew JJM, Brooks DJ, Lloyd CM, Frith CD, et al. Frontal lobe dysfunction in amyotrophic lateral sclerosis. A PET study. Brain. 1996;119:2105–20.

    Article  PubMed  Google Scholar 

  39. Abrahams S, Goldstein LH, Al-Chalabi A, Pickering A, Morris RG, Passingham RE, et al. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 1997;62:464–72.

    Article  PubMed  CAS  Google Scholar 

  40. Pagani M, Dessi B, Morbelli S, Brugnolo A, Salmaso D, Piccini A, et al. MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res. 2010;7:287–94.

    Article  PubMed  CAS  Google Scholar 

  41. Nobili F, Mazzei D, Dessi B, Morbelli S, Brugnolo A, Barbieri P, et al. Unawareness of memory deficit in amnestic MCI: FDG-PET findings. J Alzheimers Dis. 2010;22:993–1003.

    PubMed  Google Scholar 

  42. Del Sole A, Clerici F, Chiti A, Lecchi M, Mariani C, Maggiore L, et al. Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: an FDG PET study. Eur J Nucl Med Mol Imaging. 2008;35:1357–66.

    Article  PubMed  Google Scholar 

  43. Borghammer P, Cumming P, Aanerud J, Gjedde A. Artefactual subcortical hyperperfusion in PET studies normalized to global mean: lessons from Parkinson’s disease. Neuroimage. 2009;45:249–57.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the patients who kindly agreed to participate in this study, Ms Deborah Bertoluzzo and the personnel of IRMET for their valuable help in patient management, and Mrs Emanuela Enrico for English editing. This work was in part supported by Compagnia di San Paolo, Programma Neuroscienze 2008–2009 (to Consuelo Valentini e Andrea Calvo), and by the European Community’s Health Seventh Framework Programme (FP7/2007-2013) to Adriano Chiò (grant 259867).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pagani.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00259-011-2029-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cistaro, A., Valentini, M.C., Chiò, A. et al. Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset. Eur J Nucl Med Mol Imaging 39, 251–259 (2012). https://doi.org/10.1007/s00259-011-1979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1979-6

Keywords

Navigation