Skip to main content
Log in

Direct relationship between cell density and FDG uptake in asymptomatic aortic aneurysm close to surgical threshold: an in vivo and in vitro study

European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Conflicting results have been reported about the clinical value of fluorodeoxyglucose (FDG) imaging in predicting the risk of rupture of abdominal aortic aneurysm (AAA). The present study tests the hypothesis that FDG uptake is low in asymptomatic noninflammatory AAA due to the low cell density in aneurysmal walls.

Methods

Positron emission tomography (PET)/CT imaging was performed in 12 consecutive candidates for AAA surgical repair and in 12 age- and sex-matched controls. At intervention, aneurysmal walls were cut into three sequential blocks. Block A was frozen to cut three 5-μm slices for incubation with 2–3 MBq of FDG for 5 min. Block C was first incubated with the same tracer solution for the same time and subsequently frozen to cut three 5-μm slices. Autoradiographic images were coregistered with immunohistochemical pictures of cell density, type and DNA synthesis as assessed on block B.

Results

No visible uptake in abdominal aorta occurred in any patient or control subject. Immunohistochemistry documented a severe loss of wall structure, with low numbers of cells. Tracer retention directly correlated with overall cell density and with prevalence of cells synthesizing DNA. The metabolic nature of FDG uptake was confirmed by the selective effect of preliminary freezing that decreased tracer content by 90% in regions with high cell density and only by 34% in cold acellular areas.

Conclusion

The loss of tissue structure and the marked decrease in cell density account for the low prevalence of positive findings at FDG PET imaging, at least in asymptomatic patients bearing AAAs whose diameter is close to surgical indication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ballard DJ, Filardo G, Fowkes G, Powell JT. Surgery for small asymptomatic abdominal aortic aneurysms. Cochrane Database Syst Rev 2008;4:CD001835.

    PubMed  Google Scholar 

  2. Lederle FA. Abdominal aortic aneurysm—open versus endovascular repair. N Engl J Med 2004;351:1677–9.

    Article  PubMed  CAS  Google Scholar 

  3. Anidjar S, Salzmann JL, Gentric D, Lagneau P, Camilleri JP, Michel JB. Elastase-induced experimental aneurysms in rats. Circulation 1990;82:973–81.

    Article  PubMed  CAS  Google Scholar 

  4. Ocana E, Bohórquez JC, Pérez-Requena J, Brieva JA, Rodríguez C. Characterisation of T and B lymphocytes infiltrating abdominal aortic aneurysms. Atherosclerosis 2003;170:39–48.

    Article  PubMed  CAS  Google Scholar 

  5. Koch AE, Haines GK, Rizzo RJ, Radosevich JA, Pope RM, Robinson PG, et al. Human abdominal aortic aneurysms. Immunophenotypic analysis suggesting an immune-mediated response. Am J Pathol 1990;137:1199–213.

    PubMed  CAS  Google Scholar 

  6. Henderson EL, Geng Y-J, Sukhova GK, Whittemore AD, Knox J, Libby P. Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation 1999;99:96–104.

    PubMed  CAS  Google Scholar 

  7. Koch AE, Kunkel SL, Pearce WH, Shah MR, Parikh D, Evanoff HL, et al. Enhanced production of the chemotactic cytokines interleukin-8 and monocyte chemoattractant protein-1 in human abdominal aortic aneurysms. Am J Pathol 1993;142:1423–31.

    PubMed  CAS  Google Scholar 

  8. Freestone T, Turner RJ, Coady A, Higman DJ, Greenhalgh RM, Powell JT. Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 1995;15:1145–51.

    Article  PubMed  CAS  Google Scholar 

  9. Goodall S, Crowther M, Hemingway DM, Bell PR, Thompson MM. Ubiquitous elevation of matrix metalloproteinase-2 expression in the vasculature of patients with abdominal aneurysms. Circulation 2001;104:304–9.

    PubMed  CAS  Google Scholar 

  10. Carrell TW, Burnand KG, Wells GM, Clements JM, Smith A. Stromelysin-1 (matrix metalloproteinase-3) and tissue inhibitor of metalloproteinase-3 are overexpressed in the wall of abdominal aortic aneurysms. Circulation 2002;105:477–82.

    Article  PubMed  CAS  Google Scholar 

  11. Annabi B, Shédid D, Ghosn P, Kenigsberg RL, Desrosiers RR, Bojanowski MW, et al. Differential regulation of matrix metalloproteinase activities in abdominal aortic aneurysms. J Vasc Surg 2002;35:539–46.

    Article  PubMed  Google Scholar 

  12. Reeps C, Essler M, Pelisek J, Seidl S, Eckstein HH, Krause BJ. Increased 18F-fluorodeoxyglucose uptake in abdominal aortic aneurysms in positron emission/computed tomography is associated with inflammation, aortic wall instability, and acute symptoms. J Vasc Surg 2008;48:417–23.

    Article  PubMed  Google Scholar 

  13. Kotze CW, Menezes LJ, Endozo R, Groves AM, Ell PJ, Yusuf SW. Increased metabolic activity in abdominal aortic aneurysm detected by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Eur J Vasc Endovasc Surg 2009;38:93–9.

    Article  PubMed  CAS  Google Scholar 

  14. Sakalihasan N, Hustinx R, Limet R. Contribution of PET scanning to the evaluation of abdominal aortic aneurysm. Semin Vasc Surg 2004;17:144–53.

    Article  PubMed  Google Scholar 

  15. Truijers M, Kurvers HAJM, Bredie SJH, Oyen WJG, Blankensteijn JD. In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J Endovasc Ther 2008;15:462–7.

    Article  PubMed  Google Scholar 

  16. Palombo D, Morbelli S, Spinella G, et al. A positron emission/computed tomography (PET/CT) evaluation of asymptomatic abdominal aortic aneurysms: another point of view. Ann Vasc Surg 2011; in press.

  17. Laitinen I, Marjamäki P, Haaparanta M, Savisto N, Laine VJ, Soini SL, et al. Non-specific binding of [18F]FDG to calcifications in atherosclerotic plaques: experimental study of mouse and human arteries. Eur J Nucl Med Mol Imaging 2006;33:1461–7.

    Article  PubMed  CAS  Google Scholar 

  18. Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 2010;37:181–200.

    Article  PubMed  Google Scholar 

  19. Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007;50:892–6.

    Article  PubMed  Google Scholar 

  20. Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 2008;49:871–8.

    Article  PubMed  Google Scholar 

  21. Izquierdo-Garcia D, Davies JR, Graves MJ, Rudd JH, Gillard JH, Weissberg PL, et al. Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries: reproducibility, partial volume correction, and correlation between methods. Stroke 2009;40:86–93.

    Article  PubMed  Google Scholar 

  22. Ellison RC, Zhang Y, Wagenknecht LE, Eckfeldt JH, Hopkins PN, Pankow JS, et al. Relation of the metabolic syndrome to calcified atherosclerotic plaque in the coronary arteries and aorta. Am J Cardiol 2005;95:1180–6.

    Article  PubMed  Google Scholar 

  23. Siegel CL, Cohan RH, Korobkin M, Alpern MB, Courneya DL, Leder RA. Abdominal aortic aneurysm morphology: CT features in patients with ruptured and nonruptured aneurysms. AJR Am J Roentgenol 1994;163:1123–9.

    PubMed  CAS  Google Scholar 

  24. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–11.

    Article  PubMed  CAS  Google Scholar 

  25. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245–50.

    PubMed  CAS  Google Scholar 

  26. Walter MA, Melzer RA, Schindler C, Müller-Brand J, Tyndall A, Nitzsche EU. The value of [18F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging 2005;32:674–81.

    Article  PubMed  Google Scholar 

  27. van der Vliet JA, Boll AP. Abdominal aortic aneurysm. Lancet 1997;349:863–6.

    Article  PubMed  Google Scholar 

  28. Daugherty A, Cassis LA. Mechanisms of abdominal aortic aneurysm formation. Curr Atheroscler Rep 2002;4:222–7.

    Article  PubMed  Google Scholar 

  29. Satta J, Laurila A, Pääkko P, Haukipuro K, Sormunen R, Parkkila S, et al. Chronic inflammation and elastin degradation in abdominal aortic aneurysm disease: an immunohistochemical and electron microscopic study. Eur J Vasc Endovasc Surg 1998;15:313–9.

    Article  PubMed  CAS  Google Scholar 

  30. Stella A, Gargiulo M, Pasquinelli G, Preda P, Faggioli GL, Cenacchi G, et al. The cellular component in the parietal infiltrate of inflammatory abdominal aortic aneurysms (IAAA). Eur J Vasc Surg 1991;5:65–70.

    Article  PubMed  CAS  Google Scholar 

  31. Tisell LE, Oden A, Muth A, Altiparmak G, Mõlne J, Ahlman H, et al. The Ki67 index a prognostic marker in medullary thyroid carcinoma. Br J Cancer 2003;89:2093–7.

    Article  PubMed  CAS  Google Scholar 

  32. Annovazzi A, Bonanno E, Arca M, D’Alessandria C, Marcoccia A, Spagnoli LG, et al. 99mTc-interleukin-2 scintigraphy for the in vivo imaging of vulnerable atherosclerotic plaques. Eur J Nucl Med Mol Imaging 2006;33:117–26.

    Article  PubMed  CAS  Google Scholar 

  33. Zubal G, Fujibayashi Y, Maruoka N, Omata N, Yonekura Y. Automated kinetic analysis of FDG uptake in living rat brain slices from dynamic positron autoradiography. Cancer Biother Radiopharm 2003;18:405–11.

    Article  PubMed  Google Scholar 

  34. Colin S, Mascarelli F, Jeanny JC, Vienet R, Bouche G, Courtois Y, et al. Comparative study in vivo and in vitro of uniformly 14C-labelled and 125I-labelled recombinant fibroblast growth factor 2. Eur J Biochem 1997;249:473–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Marini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marini, C., Morbelli, S., Armonino, R. et al. Direct relationship between cell density and FDG uptake in asymptomatic aortic aneurysm close to surgical threshold: an in vivo and in vitro study. Eur J Nucl Med Mol Imaging 39, 91–101 (2012). https://doi.org/10.1007/s00259-011-1955-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1955-1

Keywords

Navigation