Skip to main content

Advertisement

Log in

In vivo imaging of astrocytosis in Alzheimer’s disease: an 11C-L-deuteriodeprenyl and PIB PET study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Astrocytosis is an important feature of the neuropathology of Alzheimer’s disease (AD), yet there is currently no way of detecting this phenomenon in vivo.

Methods

In this study we examine the retention of the positron emission tomography (PET) tracer 11C-L-deuteriodeprenyl (DED), thought to bind activated astrocytes, in 9 patients with moderate to severe AD compared with 11 healthy controls. As a measure of amyloid load, 11C-labelled Pittsburgh Compound B (PIB) retention was determined.

Results

Results show a significantly higher 11C-L-DED retention in the frontal (35.1% increase, p = 0.001), parietal (35.2%, p = 0.001), temporal (30.9%, p = 0.0001) and medial temporal lobes (22.3%, p = 0.001) in AD compared to healthy controls after blood flow correction. DED retention in the sensorimotor and occipital cortices, and in white matter and subcortical structures, did not differ between groups. There was a moderate but statistically significant (r = 0.492, p = 0.01) correlation between DED and PIB retention values.

Conclusion

Our conclusion is that DED may serve as an in vivo marker for astrocytosis in AD, providing a window into intermediate processes between amyloidosis and neuronal loss and a means of monitoring immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Rodríguez JJ, Olabarria M, Chvatal A, Verkhratsky A. Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 2009;16(3):378–85.

    PubMed  Google Scholar 

  2. Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, et al. Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol 2009;66(1):60–7.

    PubMed  Google Scholar 

  3. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001;358(9280):461–7.

    PubMed  CAS  Google Scholar 

  4. Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H. Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol 1990;80:419–25.

    PubMed  CAS  Google Scholar 

  5. Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 1994;62:15–30.

    PubMed  CAS  Google Scholar 

  6. Wisniewski HM, Wegiel J. Spatial relationships between astrocytes and classical plaque components. Neurobiol Aging 1991;12:593–600.

    PubMed  CAS  Google Scholar 

  7. Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC, Wegiel J. Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 2004;25:663–74.

    PubMed  CAS  Google Scholar 

  8. Ekblom J, Jossan SS, Bergström M, Oreland L, Walum E, Aquilonius SM. Monoamine oxidase-B in astrocytes. Glia 1993;8(2):122–32.

    PubMed  CAS  Google Scholar 

  9. Levitt P, Pintar JE, Breakefield XO. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci U S A 1982;79(20):6385–9.

    PubMed  CAS  Google Scholar 

  10. Jossan SS, d’Argy R, Gillberg PG, Aquilonius SM, Långström B, Halldin C, et al. Localization of monoamine oxidase B in human brain by autoradiographical use of 11C-labelled L-deprenyl. J Neural Transm 1989;77:55–64.

    PubMed  CAS  Google Scholar 

  11. Jossan SS, Gillberg PG, Giotfries CG, Karlsson I, Oreland L. Monoamine oxidase B in brains from patients with Alzheimer’s disease: a biochemical and autoradiographical study. Neuroscience 1991;45(1):1–12.

    PubMed  CAS  Google Scholar 

  12. Fowler CJ, Wiberg A, Oreland L, Marcusson J, Winblad B. The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 1980;49:1–20.

    PubMed  CAS  Google Scholar 

  13. Freedman NM, Mishani E, Krausz Y, Weininger J, Lester H, Blaugrund E, et al. In vivo measurement of brain monoamine oxidase B occupancy by rasagiline, using (11)C-l-deprenyl and PET. J Nucl Med 2005;46(10):1618–24.

    PubMed  CAS  Google Scholar 

  14. Hirvonen J, Kailajärvi M, Haltia T, Koskimies S, Någren K, Virsu P, et al. Assessment of MAO-B occupancy in the brain with PET and [11C]-L-deprenyl-D2: a dose-finding study with a novel MAO-B inhibitor, EVT 301. Clin Pharmacol Ther 2009;85(5):506–12. Epub 2009 Jan 7.

    PubMed  CAS  Google Scholar 

  15. Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D, et al. Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science 1987;235(4787):481–5.

    PubMed  CAS  Google Scholar 

  16. Fowler JS, Wang GJ, Logan J, Xie S, Volkow ND, MacGregor RR, et al. Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. J Nucl Med 1995;36(7):1255–62.

    PubMed  CAS  Google Scholar 

  17. Johansson A, Engler H, Blomquist G, Scott B, Wall A, Aquilonius SM, et al. Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET. J Neurol Sci 2007;255(1–2):17–22. Epub 2007 Mar 7.

    PubMed  CAS  Google Scholar 

  18. Engler H, Lundberg PO, Ekbom K, Nennesmo I, Nilsson A, Bergström M, et al. Multitracer study with positron emission tomography in Creutzfeldt-Jakob disease. Eur J Nucl Med Mol Imaging 2003;30(1):85–95.

    PubMed  CAS  Google Scholar 

  19. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004;55(3):306–19.

    PubMed  CAS  Google Scholar 

  20. Kadir A, Marutle A, Gonzalez D, Schöll M, Almkvist O, Mousavi M, et al. Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer’s disease. Brain 2011;134:301–17.

    PubMed  Google Scholar 

  21. Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 2006;129(Pt 11):2856–66. Epub 2006 Jul 19.

    PubMed  Google Scholar 

  22. Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 2008;29(10):1456–65. Epub 2007 May 11.

    PubMed  CAS  Google Scholar 

  23. Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993;43(2):250–60.

    PubMed  Google Scholar 

  24. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98.

    PubMed  CAS  Google Scholar 

  25. McKeith IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. J Alzheimers Dis 2006;9(3 Suppl):417–23.

    PubMed  Google Scholar 

  26. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 2003;46:2740–54.

    PubMed  CAS  Google Scholar 

  27. Fowler JS, Wolf AP, MacGregor RR, Dewey SL, Logan J, Schlyer DJ, et al. Mechanistic positron emission tomography studies: demonstration of deuterium isotope effect in the monoamine oxidase-catalyzed binding of [11C]L-deprenyl in living baboon brain. J Neurochem 1988;51:1524–34.

    PubMed  CAS  Google Scholar 

  28. MacGregor RR, Fowler JS, Wolf AP, Halldin C, Langström B. Synthesis of suicide inhibitors of monoamine oxidase: carbon-11 labeled clorgyline, L-deprenyl and D-deprenyl. J Labelled Comp Radiopharm 1988;25:1–9.

    CAS  Google Scholar 

  29. Bergström M, Kumlien E, Lilja A, Tyrefors N, Westerberg G, Långström B. Temporal lobe epilepsy visualized with PET with 11C-L-deuterium-deprenyl—analysis of kinetic data. Acta Neurol Scand 1998;98:224–31.

    PubMed  Google Scholar 

  30. Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005;46:1959–72.

    PubMed  CAS  Google Scholar 

  31. Blomquist G, Engler H, Nordberg A, Ringheim A, Wall A, Forsberg A, et al. Unidirectional influx and net accumulation of PIB. Open Neuroimag J 2008;2:114–25.

    PubMed  CAS  Google Scholar 

  32. Rostomian AH, Madison C, Rabinovici GD, Jagust WJ. Early 11C-PIB frames and 18F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med 2011;52(2):173–9. Epub 2011 Jan 13.

    PubMed  Google Scholar 

  33. Fowler JS, Volkow ND, Wang GJ, Logan J, Pappas N, Shea C, et al. Age-related increase in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging 1997;18(4):431–5.

    PubMed  CAS  Google Scholar 

  34. Braak H, de Vos RA, Jansen EN, Bratzke H, Braak E. Neuropathological hallmarks of Alzheimer’s and Parkinson’s diseases. Prog Brain Res 1998;117:267–85.

    PubMed  CAS  Google Scholar 

  35. Braak H, Braak E, Bohl J, Bratzke H. Evolution of Alzheimer’s disease related cortical lesions. J Neural Transm Suppl 1998;54:97–106.

    PubMed  CAS  Google Scholar 

  36. Nelson P, Jicha G, Schmitt F, Liu H, Davis D, Mendiondo M, et al. Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles “do count” when staging disease severity. J Neuropathol Exp Neurol 2007;66:1136–46.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank the staff of Uppsala Imanet for their dedication and professionalism in performing this study, the patients and their relatives for their participation, Ass. Prof. Elisabet Englund for helpful comments and Michael Schöll for the suggestion to correct the DED binding with the blood flow, represented by the intercept.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Frizell Santillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santillo, A.F., Gambini, J.P., Lannfelt, L. et al. In vivo imaging of astrocytosis in Alzheimer’s disease: an 11C-L-deuteriodeprenyl and PIB PET study. Eur J Nucl Med Mol Imaging 38, 2202–2208 (2011). https://doi.org/10.1007/s00259-011-1895-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1895-9

Keywords

Navigation