Skip to main content
Log in

123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To analyse different uptake patterns in 123I-MIBG scintigraphy/SPECT imaging and 18F-FDG PET in paediatric neuroblastoma patients.

Methods

We compared 23 123I-MIBG scintigraphy scans and 23 18F-FDG PET scans (mean interval 10 days) in 19 patients with a suspected neuroblastic tumour (16 neuroblastoma, 1 ganglioneuroblastoma, 1 ganglioneuroma and 1 opsomyoclonus syndrome). SPECT images of the abdomen or other tumour-affected regions were available in all patients. Indications for 18F-FDG PET were a 123I-MIBG-negative tumour, a discrepancy in 123I-MIBG uptake compared to the morphological imaging or imaging results inconsistent with clinical findings. A lesion was found by 123I-MIBG scintigraphy and/or 18F-FDG PET and/or morphological imaging.

Results

A total of 58 suspicious lesions (mean lesion diameter 3.8 cm) were evaluated and 18 were confirmed by histology and 40 by clinical follow-up. The sensitivities of 123I-MIBG scintigraphy and 18F-FDG PET were 50% and 78% and the specificities were 75% and 92%, respectively. False-positive results (three 123I-MIBG scintigraphy, one 18F-FDG PET) were due to physiological uptake or posttherapy changes. False-negative results (23 123I-MIBG scintigraphy, 10 18F-FDG PET) were due to low uptake and small lesion size. Combined 123I-MIBG scintigraphy/18F-FDG PET imaging showed the highest sensitivity of 85%. In 34 lesions the 123I-MIBG scintigraphy and morphological imaging findings were discrepant. 18F-FDG PET correctly identified 32 of the discrepant findings. Two bone/bone marrow metastases were missed by 18F-FDG PET.

Conclusion

123I-MIBG scintigraphy and 18F-FDG PET showed noticeable differences in their uptake patterns. 18F-FDG PET was more sensitive and specific for the detection of neuroblastoma lesions. Our findings suggest that a 18F-FDG PET scan may be useful in the event of discrepant or inconclusive findings on 123I-MIBG scintigraphy/SPECT and morphological imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Spix C, Aareleid T, Stiller C, Magnani C, Kaatsch P, Michaelis J. Survival of children with neuroblastoma. time trends and regional differences in Europe, 1978–1992. Eur J Cancer. 2001;37:722–9.

    Article  PubMed  CAS  Google Scholar 

  2. Taggart D, Dubois S, Matthay KK. Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma. Q J Nucl Med Mol Imaging. 2008;52:403–18.

    PubMed  CAS  Google Scholar 

  3. DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21:181–9.

    Article  PubMed  CAS  Google Scholar 

  4. Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O’Leary M, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28:2625–34.

    Article  PubMed  Google Scholar 

  5. Balwierz W, Wieczorek A, Klekawka T, Garus K, Bolek-Marzec K, Perek D, et al. Treatment results of children with neuroblastoma: report of Polish Pediatric Solid Tumor Group. Przegl Lek. 2010;67:387–92.

    PubMed  Google Scholar 

  6. Perwein T, Lackner H, Sovinz P, Benesch M, Schmidt S, Schwinger W, et al. Survival and late effects in children with stage 4 neuroblastoma. Pediatr Blood Cancer. 2011; doi:10.1002/pbc.23036.

  7. Boubaker A, Bischof Delaloye A. Nuclear medicine procedures and neuroblastoma in childhood. Their value in the diagnosis, staging and assessment of response to therapy. Q J Nucl Med. 2003;47:31–40.

    PubMed  CAS  Google Scholar 

  8. Schmidt M, Simon T, Hero B, Schicha H, Berthold F. The prognostic impact of functional imaging with (123)I-mIBG in patients with stage 4 neuroblastoma >1 year of age on a high-risk treatment protocol: results of the German Neuroblastoma Trial NB97. Eur J Cancer. 2008;44:1552–8.

    Article  PubMed  Google Scholar 

  9. Boubaker A, Bischof Delaloye A. MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imaging. 2008;52:388–402.

    PubMed  CAS  Google Scholar 

  10. Gordon I, Peters AM, Gutman A, Morony S, Dicks-Mireaux C, Pritchard J. Skeletal assessment in neuroblastoma – the pitfalls of iodine-123-MIBG scans. J Nucl Med. 1990;31:129–34.

    PubMed  CAS  Google Scholar 

  11. Biasotti S, Garaventa A, Villavecchia GP, Cabria M, Nantron M, De Bernardi B. False-negative metaiodobenzylguanidine scintigraphy at diagnosis of neuroblastoma. Med Pediatr Oncol. 2000;35:153–5.

    Article  PubMed  CAS  Google Scholar 

  12. Kushner BH, Yeh SD, Kramer K, Larson SM, Cheung NK. Impact of metaiodobenzylguanidine scintigraphy on assessing response of high-risk neuroblastoma to dose-intensive induction chemotherapy. J Clin Oncol. 2003;21:1082–6.

    Article  PubMed  Google Scholar 

  13. Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson JC. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology. 1996;199:743–50.

    PubMed  CAS  Google Scholar 

  14. Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med. 2004;45:1172–88.

    PubMed  Google Scholar 

  15. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123I-MIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. 2009;50:1237–43.

    Article  PubMed  Google Scholar 

  16. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.

    PubMed  CAS  Google Scholar 

  17. Matthay KK, Shulkin B, Ladenstein R, Michon J, Giammarile F, Lewington V, et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force. Br J Cancer. 2010;102:1319–26.

    Article  PubMed  CAS  Google Scholar 

  18. Olivier P, Colarinha P, Fettich J, Fischer S, Frokier J, Giammarile F, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging. 2003;30:B45–50.

    Article  PubMed  Google Scholar 

  19. Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35:1581–8.

    Article  PubMed  CAS  Google Scholar 

  20. Vik TA, Pfluger T, Kadota R, Castel V, Tulchinsky M, Farto JC, et al. (123)I-mIBG scintigraphy in patients with known or suspected neuroblastoma: Results from a prospective multicenter trial. Pediatr Blood Cancer. 2009;52:784–90.

    Article  PubMed  Google Scholar 

  21. Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab. 2010;95:2596–606.

    Article  PubMed  CAS  Google Scholar 

  22. Pfluger T, Schmied C, Porn U, Leinsinger G, Vollmar C, Dresel S, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. AJR Am J Roentgenol. 2003;181:1115–24.

    PubMed  Google Scholar 

  23. Connolly LP, Drubach LA, Ted Treves S. Applications of nuclear medicine in pediatric oncology. Clin Nucl Med. 2002;27:117–25.

    Article  PubMed  Google Scholar 

  24. Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol. 2001;19:3397–405.

    PubMed  CAS  Google Scholar 

  25. Shulkin BL, Shapiro B. Current concepts on the diagnostic use of MIBG in children. J Nucl Med. 1998;39:679–88.

    PubMed  CAS  Google Scholar 

  26. Pfluger T, Schmid I, Coppenrath E, Weiss M. Modern nuclear medicine evaluation of neuroblastoma. Q J Nucl Med Mol Imaging. 2010;54:389–400.

    PubMed  CAS  Google Scholar 

  27. McDowell H, Losty P, Barnes N, Kokai G. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer. 2009;52:552.

    Article  Google Scholar 

  28. Kushner BH, Kramer K, Modak S, Cheung NK. Sensitivity of surveillance studies for detecting asymptomatic and unsuspected relapse of high-risk neuroblastoma. J Clin Oncol. 2009;27:1041–6.

    Article  PubMed  Google Scholar 

  29. Colavolpe C, Guedj E, Cammilleri S, Taieb D, Mundler O, Coze C. Utility of FDG-PET/CT in the follow-up of neuroblastoma which became MIBG-negative. Pediatr Blood Cancer. 2008;51:828–31.

    Article  PubMed  Google Scholar 

  30. Frappaz D, Bonneu A, Chauvot P, Edeline V, Giammarile F, Siles S, et al. Metaiodobenzylguanidine assessment of metastatic neuroblastoma: observer dependency and chemosensitivity evaluation. The SFOP Group. Med Pediatr Oncol. 2000;34:237–41.

    Article  PubMed  CAS  Google Scholar 

  31. Taggart DR, Han MM, Quach A, Groshen S, Ye W, Villablanca JG, et al. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol. 2009;27:5343–9.

    Article  PubMed  CAS  Google Scholar 

  32. Goo HW. Whole-body MRI of neuroblastoma. Eur J Radiol. 2010;75:306–14.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henriette Ingrid Melzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melzer, H.I., Coppenrath, E., Schmid, I. et al. 123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma. Eur J Nucl Med Mol Imaging 38, 1648–1658 (2011). https://doi.org/10.1007/s00259-011-1843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1843-8

Keywords

Navigation