Skip to main content
Log in

Calibration of gamma camera systems for a multicentre European 123I-FP-CIT SPECT normal database

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

A joint initiative of the European Association of Nuclear Medicine (EANM) Neuroimaging Committee and EANM Research Ltd. aimed to generate a European database of [123I]FP-CIT single photon emission computed tomography (SPECT) scans of healthy controls. This study describes the characterization and harmonization of the imaging equipment of the institutions involved.

Methods

123I SPECT images of a striatal phantom filled with striatal to background ratios between 10:1 and 1:1 were acquired on all the gamma cameras with absolute ratios measured from aliquots. The images were reconstructed by a core lab using ordered subset expectation maximization (OSEM) without corrections (NC), with attenuation correction only (AC) and additional scatter and septal penetration correction (ACSC) using the triple energy window method. A quantitative parameter, the simulated specific binding ratio (sSBR), was measured using the “Southampton” methodology that accounts for the partial volume effect and compared against the actual values obtained from the aliquots. Camera-specific recovery coefficients were derived from linear regression and the error of the measurements was evaluated using the coefficient of variation (COV).

Results

The relationship between measured and actual sSBRs was linear across all systems. Variability was observed between different manufacturers and, to a lesser extent, between cameras of the same type. The NC and AC measurements were found to underestimate systematically the actual sSBRs, while the ACSC measurements resulted in recovery coefficients close to 100% for all cameras (AC range 69–89%, ACSC range 87–116%). The COV improved from 46% (NC) to 32% (AC) and to 14% (ACSC) (p < 0.001).

Conclusion

A satisfactory linear response was observed across all cameras. Quantitative measurements depend upon the characteristics of the SPECT systems and their calibration is a necessary prerequisite for data pooling. Together with accounting for partial volume, the correction for scatter and septal penetration is essential for accurate quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benamer HTS, Patterson J, Grosset DG, Booij J, de Bruin K, van Royen E, et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: the [123I]-FP-CIT study group. Mov Disord 2000;15:503–10.

    Article  PubMed  CAS  Google Scholar 

  2. Catafau AM, Tolosa E, DaTSCAN Clinically Uncertain Parkinsonian Syndromes Study Group. Impact of dopamine transporter SPECT using 123I-ioflupane on diagnosis and management of patients with clinically uncertain parkinsonian syndromes. Mov Disord 2004;19:1175–82.

    Article  PubMed  Google Scholar 

  3. McKeith I, O’Brien J, Walker Z, Tatsch K, Booij J, Darcourt J, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 2007;6:305–13.

    Article  PubMed  Google Scholar 

  4. van Dyck CH, Seibyl JP, Malison RT, Laruelle M, Zoghbi SS, Baldwin RM, et al. Age-related decline in dopamine transporters: analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries. Am J Geriatr Psychiatry 2002;10:36–43.

    PubMed  Google Scholar 

  5. Meyer PT, Sattler B, Lincke T, Seese A, Sabri O. Investigating dopaminergic neurotransmission with 123I-FP-CIT SPECT: comparability of modern SPECT systems. J Nucl Med 2003;44:839–45.

    PubMed  CAS  Google Scholar 

  6. Koch W, Radau PE, Münzing W, Tatsch K. Cross-camera comparison of SPECT measurements of a 3-D anthropomorphic basal ganglia phantom. Eur J Nucl Med Mol Imaging 2006;33:495–502.

    Article  PubMed  Google Scholar 

  7. Varrone A, Sansone V, Pellecchia MT, Amboni M, Salvatore E, De Michele G, et al. Comparison between a dual-head and a brain-dedicated SPECT system in the measurement of the loss of dopamine transporters with [(123)I]FP-CIT. Eur J Nucl Med Mol Imaging 2008;35:1343–9.

    Article  PubMed  Google Scholar 

  8. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging 1991;10:408–12.

    Article  PubMed  CAS  Google Scholar 

  9. Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34:2216–21.

    PubMed  CAS  Google Scholar 

  10. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.

    Article  PubMed  CAS  Google Scholar 

  11. Dickson JC, Tossici-Bolt L, Sera T, Erlandsson K, Varrone A, Tatsch K, et al. The impact of reconstruction method on the quantification of DaTSCAN images. Eur J Nucl Med Mol Imaging 2010;37:23–35.

    Article  PubMed  Google Scholar 

  12. Cot A, Falcón C, Crespo C, Sempau J, Pareto D, Bullich S, et al. Absolute quantification in dopaminergic neurotransmission SPECT using a Monte Carlo-based scatter correction and fully 3-dimensional reconstruction. J Nucl Med 2005;46:1497–504.

    PubMed  CAS  Google Scholar 

  13. Van Laere K, Varrone A, Booij J, Vander Borght T, Nobili F, Kapucu OL, et al. EANM procedure guidelines for brain neurotransmission SPECT/PET using dopamine D2 receptor ligands, version 2. Eur J Nucl Med Mol Imaging 2010;37:434–42.

    Article  PubMed  CAS  Google Scholar 

  14. Tossici-Bolt L, Hoffmann SM, Kemp PM, Mehta RL, Fleming JS. Quantification of [(123)I]FP-CIT SPECT brain images: an accurate technique for measurement of the specific binding ratio. Eur J Nucl Med Mol Imaging 2006;33:1491–9.

    Article  PubMed  Google Scholar 

  15. Fleming JS, Bolt L, Stratford JS, Kemp PM. The specific uptake size index for quantifying radiopharmaceutical uptake. Phys Med Biol 2004;49:N227–34.

    Article  PubMed  CAS  Google Scholar 

  16. Fleiss JL. Statistical methods for rates and proportions. 2nd ed. New York: Wiley; 1981.

    Google Scholar 

  17. Crespo C, Gallego J, Cot A, Falcón C, Bullich S, Pareto D, et al. Quantification of dopaminergic neurotransmission SPECT studies with 123I-labelled radioligands. A comparison between different imaging systems and data acquisition protocols using Monte Carlo simulation. Eur J Nucl Med Mol Imaging 2008;35(7):1334–42.

    Article  PubMed  CAS  Google Scholar 

  18. Dobbeleir AA, Hambÿe ASE, Franken PR. Influence of high-energy photons on the spectrum of iodine-123 with low- and medium-energy collimators: consequences for imaging with 123I-labelled compounds in clinical practice. Eur J Nucl Med 1999;26:655–8.

    Article  PubMed  CAS  Google Scholar 

  19. Hashimoto J, Sasaki T, Ogawa K, Kubo A, Motomura N, Ichihara T, et al. Effects of scatter and attenuation correction on quantitative analysis of β-CIT brain SPECT. Nucl Med Commun 1999;20:159–65.

    Article  PubMed  CAS  Google Scholar 

  20. Fujita M, Varrone A, Kim KM, Watabe H, Zoghbi SS, Seneca N, et al. Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D2 receptors using [123I]epidepride SPECT. Eur J Nucl Med Mol Imaging 2004;31:644–54.

    Article  PubMed  CAS  Google Scholar 

  21. Fleming JS, Alaamer AS. Influence of collimator characteristics on quantification in SPECT. J Nucl Med 1996;37:1832–6.

    PubMed  CAS  Google Scholar 

  22. Inoue Y, Shirouzu I, Machida T, Yoshizawa Y, Akita F, Doi I, et al. Physical characteristics of low and medium energy collimators for 123I imaging and simultaneous dual-isotope imaging. Nucl Med Commun 2003;24:1195–202.

    Article  PubMed  CAS  Google Scholar 

  23. de Nijs R, Holm S, Thomsen G, Ziebell M, Svarer C. Experimental determination of the weighting factor for the energy window subtraction-based downscatter correction for I-123 in brain SPECT studies. J Med Phys 2010;35(4):215–22.

    Article  PubMed  Google Scholar 

  24. Tanaka M, Uehara S, Kojima A, Matsumoto M. Monte Carlo simulation of energy spectra for (123)I imaging. Phys Med Biol 2007;52:4409–25.

    Article  PubMed  CAS  Google Scholar 

  25. de Nijs R, Svarer C. Combined backscatter and scatter correction for low count I-123 SPECT studies. J Nucl Med 2007;48(Suppl 2):424P.

    Google Scholar 

  26. Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I. Quantitative accuracy of dopaminergic neurotransmission imaging with (123)I SPECT. J Nucl Med 2003;44:1184–93.

    PubMed  CAS  Google Scholar 

  27. Cot A, Sempau J, Pareto D, Bullich S, Pavía J, Calviño F, et al. Study of the point spread function (PSF) for 123I SPECT imaging using Monte Carlo simulation. Phys Med Biol 2004;49:3125–36.

    Article  PubMed  CAS  Google Scholar 

  28. Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761–82. review article.

    Article  PubMed  Google Scholar 

  29. Larsson A, Ljungberg M, Mo SJ, Riklund K, Johansson L. Correction for scatter and septal penetration using convolution subtraction methods and model-based compensation in 123I brain SPECT imaging–a Monte Carlo study. Phys Med Biol 2006;51:5753–67.

    Article  PubMed  Google Scholar 

  30. Rousset OG, Zaidi H. Correction for partial volume effects in emission tomography. In: Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 236–71.

  31. Soret M, Koulibaly PM, Darcourt J, Buvat I. Partial volume effect correction in SPECT for striatal uptake measurements in patients with neurodegenerative diseases: impact upon patient classification. Eur J Nucl Med Mol Imaging 2006;33:1062–72.

    Article  PubMed  Google Scholar 

  32. Erlandsson K, Thomas B, Dickson J, Hutton BF. Partial volume correction in SPECT reconstruction with OSEM. Nucl Instrum Methods Phys Res A 2010. doi:10.1016/j.nima.2010.12.106.

  33. Blinkov SM, Glezer II. The human brain in figures and tables. A quantitative handbook. New York: Plenum; 1968. p. 166–71.

  34. Aylward EH, Li Q, Habbak R, Warren A, Pulsifer MB, Barta PE, et al. Basal ganglia volume in adults with Down syndrome. Psychiatry Res 1997;74:73–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The participating centres wish to thank GE and the German Parkinson Association for their financial contribution to this study, ABX-CRO for managing the network activities and the Executive Committee of the EANM for establishing the EANM Research Ltd. (EARL) as an administrative framework for this project.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livia Tossici-Bolt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tossici-Bolt, L., Dickson, J.C., Sera, T. et al. Calibration of gamma camera systems for a multicentre European 123I-FP-CIT SPECT normal database. Eur J Nucl Med Mol Imaging 38, 1529–1540 (2011). https://doi.org/10.1007/s00259-011-1801-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1801-5

Keywords

Navigation