Skip to main content

Advertisement

Log in

Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

124I-PET/CT has a high clinical potential in patients with differentiated thyroid cancer (DTC). Two aspects deserve special mention: staging of recurrent or residual disease and pretherapy dosimetry. Used in combination 124I-PET and CT allows foci of highly specific 124I uptake to be localized with a low radiation dose, which is specifically important in pretherapy diagnostics. In addition in the combination of FDG-PET and CT non-iodine-avid lesions may be detected and may be discriminated from simultaneously occurring iodine-positive lesions. In clinical applications, the pretherapy 124I-PET dosimetry may result in a significant alteration in the therapeutic procedure compared to standard therapy using fixed therapeutic activities. In this context, 124I-PET dosimetry is a useful procedure especially in advanced DTC, and allows the administration of safer and more effective radioiodine activities as well as earlier multimodal interventions compared to standard empirical protocols. This review summarizes the clinical data on 124I-PET/CT in patients with DTC, and addresses future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Robbins RJ, Schlumberger MJ. The evolving role of 131I for the treatment of differentiated thyroid carcinoma. J Nucl Med. 2005;46:28S–37S.

    PubMed  CAS  Google Scholar 

  2. Riemann B, Krämer JA, Schmid KW, Dralle H, Dietlein M, Schicha H, et al. Risk stratification of patients with locally aggressive differentiated thyroid cancer. Results of the MSDS trial. Nuklearmedizin. 2010;49(3):79–84.

    Article  PubMed  Google Scholar 

  3. Biermann M, Pixberg M, Riemann B, Schuck A, Heinecke A, Schmid KW, et al. Clinical outcomes of adjuvant external-beam radiotherapy for differentiated thyroid cancer – results after 874 patient-years of follow-up in the MSDS-trial. Nuklearmedizin. 2009;48(3):89–98.

    PubMed  Google Scholar 

  4. Verburg FA, de Keizer B, de Klerk JM, Lentjes EG, Lips CJ, van Isselt JW. Value of diagnostic radioiodine scintigraphy and thyroglobulin measurements after rhTSH injection. Nuklearmedizin. 2009;48(1):26–9.

    PubMed  CAS  Google Scholar 

  5. Benua R, Cicale N, Sonenberg M, et al. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. AJR Am J Roentgenol. 1962;87:171–9.

    CAS  Google Scholar 

  6. Sawka AM, Thephamongkhol K, Brouwers M, Thebane H, Browman G, Gerstein HG. A systematic review and metaanalysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J Clin Endocrinol Metab. 2004;89:3668–76.

    Article  PubMed  CAS  Google Scholar 

  7. Maxon HR, Englaro EE, Thomas SR, et al. Radioiodine-131 therapy for well differentiated thyroid cancer: a quantitative radiation dosimetric approach – outcome and validation in 85 patients. J Nucl Med. 1992;33:1132–16.

    PubMed  Google Scholar 

  8. Maxon HR, Thomas SR, Hertzberg VS, et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med. 1983;309:937–41.

    Article  PubMed  CAS  Google Scholar 

  9. Maxon HR, Thomas SR, Samaratunga RC. Dosimetric considerations in the radioiodine treatment of macrometastases and micrometastases from differentiated thyroid cancer. Thyroid. 1997;7:183–7.

    Article  PubMed  CAS  Google Scholar 

  10. Kimmig B, Hermann HJ. Measurement of dose during radioiodine treatment of thyroid cancer. Acta Endocrinol. 1983;252 Suppl:72.

    Google Scholar 

  11. Dietlein M, Dressler J, Farahati F, et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 2). Nuklearmedizin. 2004;43:115–20.

    PubMed  CAS  Google Scholar 

  12. Mazzaferri EL. An overview of the management of papillary and follicular thyroid carcinoma. Thyroid. 1999;9(5):421–7.

    Article  PubMed  CAS  Google Scholar 

  13. Dorn R, Kopp J, Vogt H, et al. Dosimetry guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med. 2003;44:451–6.

    PubMed  CAS  Google Scholar 

  14. Furhang EE, Larson SM, Buranapong P, et al. Thyroid cancer dosimetry using clearance fitting. J Nucl Med. 1999;40:131–6.

    PubMed  CAS  Google Scholar 

  15. Lassmann M, Reiners C, Luster M. Dosimetry and thyroid cancer: the individual dosage of radioiodine. Endocr Relat Cancer. 2010;17(3):R161–72.

    Article  PubMed  CAS  Google Scholar 

  16. Verburg FA, Verkooijen RB, Stokkel MP, van Isselt JW. The success of 131I ablation in thyroid cancer patients is significantly reduced after a diagnostic activity of 40 MBq 131I. Nuklearmedizin. 2009;48(4):138–42.

    PubMed  CAS  Google Scholar 

  17. Flower MA, McCready VR. Radionuclide therapy dose calculations: what accuracy can be achieved. Eur J Nucl Med. 1997;24:1462.

    Article  PubMed  CAS  Google Scholar 

  18. Phillips AF, Haybittle JL, Newberry GR. Use of iodine-124 for the treatment of carcinoma of the thyroid. Acta Unio Int Contra Cancrum. 1960;16:1434–8.

    PubMed  CAS  Google Scholar 

  19. Erdi YE, Macapinlac H, Larson SM, et al. Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging. 1999;2:41–6.

    Article  PubMed  Google Scholar 

  20. Pentlow KS, Graham MC, Lambrecht RM, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med. 1996;37:1557–62.

    PubMed  CAS  Google Scholar 

  21. Pentlow KS, Graham MC, Lambrecht RM, et al. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys. 1991;18:357–66.

    Article  PubMed  CAS  Google Scholar 

  22. Freudenberg LS, Antoch G, Knust J, Görges R, Müller SP, Bockisch A, et al. Value of 124I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol. 2004;14:2092–8.

    Article  PubMed  CAS  Google Scholar 

  23. Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2008;49(6):1017–23.

    Article  PubMed  Google Scholar 

  24. Crawford DC, Flower MA, Pratt BE, et al. Thyroid volume measurement in thyrotoxic patients: comparison between ultrasonography and iodine-124 positron emission tomography. Eur J Nucl Med. 1997;24:1470–8.

    Article  PubMed  CAS  Google Scholar 

  25. Freudenberg LS, Bockisch A, Jentzen W. 124I positron emission tomographic dosimetry and positron emission tomography/computed tomography imaging in differentiated thyroid cancer. In: Biersack HJ, Grünwald F, editors. Thyroid cancer. 2nd ed. Berlin: Springer; 2005.

    Google Scholar 

  26. Frey P, Townsend D, Flattet A, et al. Tomographic imaging of the human thyroid using I-124. J Clin Endocrinol Metab. 1986;63:918–27.

    Article  PubMed  CAS  Google Scholar 

  27. Frey P, Townsend D, Jeavons A, et al. In vivo imaging of the human thyroid with a positron camera using 124I. Eur J Nucl Med. 1985;10:472–6.

    Article  PubMed  CAS  Google Scholar 

  28. Lambrecht RM, Woodhouse N, Phillips R, et al. Investigational study of iodine-124 with a positron camera. Am J Physiol Imaging. 1988;3:197–200.

    PubMed  CAS  Google Scholar 

  29. Sgouros G, Kolbert K, Sheikh A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med. 2004;45:1366–72.

    PubMed  CAS  Google Scholar 

  30. Freudenberg LS, Jentzen W, Petrich T, Frömke C, Marlowe RJ, Heusner T, et al. Lesion dose in differentiated thyroid carcinoma metastases after rhTSH or thyroid hormone withdrawal: 124I PET/CT dosimetric comparisons. Eur J Nucl Med Mol Imaging. 2010;37:2267–76.

    Article  PubMed  CAS  Google Scholar 

  31. Jentzen W. Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging. Phys Med Biol. 2010;55(8):2365–98.

    Article  PubMed  Google Scholar 

  32. Freudenberg LS, Frömke C, Petrich T, Marlowe RJ, Koska WW, Brandau W, et al. Thyroid remnant dose: 124I-PET/CT dosimetric comparison of rhTSH versus thyroid hormone withholding before radioiodine remnant ablation in differentiated thyroid cancer. Exp Clin Endocrinol Diabetes. 2010;118(7):393–9.

    Article  PubMed  CAS  Google Scholar 

  33. Stahl AR, Freudenberg L, Bockisch A, Jentzen W. A novel view on dosimetry-related radionuclide therapy: presentation of a calculatory model and its implementation for radioiodine therapy of metastasized differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2009;36(7):1147–55.

    Article  PubMed  CAS  Google Scholar 

  34. O’Connell ME, Flower MA, Hinton PJ, et al. Radiation dose assessment in radioiodine therapy: dose-response relationships in differentiated thyroid carcinoma using quantitative scanning and PET. Radiother Oncol. 1993;28:16–26.

    Article  PubMed  Google Scholar 

  35. Freudenberg LS, Jentzen W, Görges R, Petrich T, Marlowe RJ, Knust J, et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin. 2007;46(4):121–8.

    PubMed  CAS  Google Scholar 

  36. Knust EJ, Dutschka K, Weinreich R. Preparation of 124I solutions after thermodistillation of irradiated 124TeO2 targets. Appl Radiat Isot. 2000;52:181–4.

    Article  PubMed  CAS  Google Scholar 

  37. Jentzen W, Freudenberg L, Bockisch A. Quantitative imaging of 124I with PET/CT in pretherapy lesion dosimetry. Effects impairing image quantification and their corrections. Q J Nucl Med Mol Imaging. 2011;55:21–43

    PubMed  CAS  Google Scholar 

  38. Jentzen W, Weise R, Kupferschläger J, Freudenberg L, Brandau W, Bares R, et al. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. Eur J Nucl Med Mol Imaging. 2008;35(3):611–23.

    Article  PubMed  Google Scholar 

  39. Eschmann SM, Reischl G, Bilger K, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med. 2002;29:760–7.

    Article  CAS  Google Scholar 

  40. Bockisch A, Freudenberg L, Rosenbaum S, Jentzen W. (124)I in PET imaging: impact on quantification, radiopharmaceutical development and distribution. Eur J Nucl Med Mol Imaging. 2006;33(11):1247–8.

    Article  PubMed  Google Scholar 

  41. Chen L, Luo Q, Shen Y, Yu Y, Yuan Z, Lu H, et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med. 2008;49(12):1952–7.

    Article  PubMed  Google Scholar 

  42. Wong KK, Zarzhevsky N, Cahill JM, Frey KA, Avram AM. Hybrid SPECT-CT and PET-CT imaging of differentiated thyroid carcinoma. Br J Radiol. 2009;82(982):860–76.

    Article  PubMed  CAS  Google Scholar 

  43. Phan HT, Jager PL, Paans AM, Plukker JT, Sturkenboom MG, Sluiter WJ, et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(5):958–65.

    Article  PubMed  Google Scholar 

  44. Capoccetti F, Criscuoli B, Rossi G, Ferretti F, Manni C, Brianzoni E. The effectiveness of 124I PET/CT in patients with differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2009;53(5):536–45.

    PubMed  CAS  Google Scholar 

  45. Fleming ID, Cooper JS, Henson DE. AJCC cancer staging manual. 5th ed. American Joint Committee on Cancer: Lippincott-Raven, Philadelphia;1997

  46. Van Nostrand D, Moreau S, Bandaru VV, Atkins F, Chennupati S, Mete M, et al. (124)I positron emission tomography versus (131)I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid. 2010;20(8):879–83.

    Article  PubMed  Google Scholar 

  47. Freudenberg LS, Antoch G, Frilling A, Jentzen W, Rosenbaum SJ, Kühl H, et al. Combined metabolic and morphologic imaging in thyroid carcinoma patients with elevated serum thyroglobulin and negative cervical ultrasonography: role of 124I-PET/CT and FDG-PET. Eur J Nucl Med Mol Imaging. 2008;35(5):950–7.

    Article  PubMed  CAS  Google Scholar 

  48. Leitha T, Staudenherz A. Frequency of diagnostic dilemmas in 131I whole body scanning. Nuklearmedizin. 2003;42(2):55–62.

    PubMed  CAS  Google Scholar 

  49. Urhan M, Dadparvar S, Mavi A, Houseni M, Chamroonrat W, Alavi A, et al. Iodine-123 as a diagnostic imaging agent in differentiated thyroid carcinoma: a comparison with iodine-131 post-treatment scanning and serum thyroglobulin measurement. Eur J Nucl Med Mol Imaging. 2007;34(7):1012–7.

    Article  PubMed  CAS  Google Scholar 

  50. Abdul-Fatah SB, Zamburlini M, Halders SG, Brans B, Teule GJ, Kemerink GJ. Identification of a shine-through artifact in the trachea with (124)I PET/CT. J Nucl Med. 2009;50(6):909–11.

    Article  PubMed  Google Scholar 

  51. Stewart BW, Kleihues P. Thyroid cancer. In: Stewart BW, Kleihues P, editors. World cancer report. Lyon, France: Lyon. IARC Press; 2003. p. 257–60.

    Google Scholar 

  52. Massin JP, Savoie JC, Garnier H, Guiraudon G, Leger FA, Bacourt F. Pulmonary metastases in differentiated thyroid carcinoma. Study of 58 cases with implications for the primary tumor treatment. Cancer. 1984;53:982–92.

    Article  PubMed  CAS  Google Scholar 

  53. Casara D, Rubello D, Saladini G, et al. Different features of pulmonary metastases in differentiated thyroid cancer: natural history and multivariate statistical analysis of prognostic variables. J Nucl Med. 1993;34:1626–31.

    PubMed  CAS  Google Scholar 

  54. Sisson JC, Giordano TJ, Jamadar DA, et al. 131-I treatment of micronodular pulmonary metastases from papillary thyroid carcinoma. Cancer. 1996;78:2184–92.

    Article  PubMed  CAS  Google Scholar 

  55. Brink JS, Heerden JA, McIver B, et al. Papillary thyroid cancer with pulmonary metastases in children: long-term prognosis. Surgery. 2000;128:881–7.

    Article  PubMed  CAS  Google Scholar 

  56. Sisson JC, Jamadar DA, Kazerooni EA, et al. Treatment of micronodular lung metastases of papillary thyroid cancer: are the tumors too small for effective irradiation from radioiodine? Thyroid. 1998;8:215–21.

    Article  PubMed  CAS  Google Scholar 

  57. Ilgan S, Karacalioglu O, Pabuscu Y, et al. Iodine-131 treatment and high-resolution CT: results in patients with lung metastases from differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2004;31:825–30.

    Article  PubMed  CAS  Google Scholar 

  58. Freudenberg LS, Jentzen W, Müller SP, Bockisch A. Disseminated iodine-avid lung metastases in differentiated thyroid cancer: a challenge to 124I PET. Eur J Nucl Med Mol Imaging. 2008;35(3):502–8.

    Article  PubMed  CAS  Google Scholar 

  59. Dietlein M, Busemeyer S, Kobe C, Schmidt M, Theissen P, Schicha H. Recombinant human TSH versus hypothyroidism. Cost-minimization-analysis in the follow-up care of differentiated thyroid carcinoma. Nuklearmedizin. 2010;49(6):216–24.

    Article  Google Scholar 

  60. Haugen BR, Pacini F, Reiners C, Schlumberger M, Ladenson PW, Sherman SI, et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab. 1999;84:3877–85.

    Article  PubMed  CAS  Google Scholar 

  61. Pacini F, Ladenson PW, Schlumberger M, Driedger A, Luster M, Kloos RT, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab. 2006;91:926–32.

    Article  PubMed  CAS  Google Scholar 

  62. Zanotti-Fregonara P, Hindié E. On the effectiveness of recombinant human TSH as a stimulating agent for 131I treatment of metastatic differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37(12):2264–6.

    Article  PubMed  Google Scholar 

  63. Schmitz G, Fuzesi L, Struck J, et al. Expression of the sodium iodide symporter in differentiated thyroid cancer: clinical evidence. Nuklearmedizin. 2005;44:86–93.

    PubMed  CAS  Google Scholar 

  64. Walter MA, Turtschi CP, Schindler C, et al. The dental safety profile of high-dose radioiodine therapy for thyroid cancer: long-term results of a longitudinal cohort study. J Nucl Med. 2007;48:1620–5.

    Article  PubMed  Google Scholar 

  65. Jentzen W, Balschuweit D, Schmitz J, Freudenberg L, Eising E, Hilbel T, et al. The influence of saliva flow stimulation on the absorbed radiation dose to the salivary glands during radioiodine therapy of thyroid cancer using (124)I PET(/CT) imaging. Eur J Nucl Med Mol Imaging. 2010;37:2298–306

    Article  PubMed  CAS  Google Scholar 

  66. Jentzen W, Hobbs RF, Stahl A, Knust J, Sgouros G, Bockisch A. Pre-therapeutic (124)I PET(/CT) dosimetry confirms low average absorbed doses per administered (131)I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2010;37(5):884–95.

    Article  PubMed  CAS  Google Scholar 

  67. Jentzen W, Schneider E, Freudenberg L, Eising EG, Görges R, Müller SP, et al. Relationship between cumulative radiation dose and salivary gland uptake associated with radioiodine therapy of thyroid cancer. Nucl Med Commun. 2006;27(8):669–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

Lutz S. Freudenberg serves as an advisor to cmi-experts GmbH, and has received speaker fees from Siemens Healthcare, Philips Healthcare, and Genzyme Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz S. Freudenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freudenberg, L.S., Jentzen, W., Stahl, A. et al. Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 38 (Suppl 1), 48–56 (2011). https://doi.org/10.1007/s00259-011-1773-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1773-5

Keywords

Navigation