Skip to main content

Advertisement

Log in

Absolute quantification in SPECT

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Single-photon emission computed tomography (SPECT) allows the three-dimensional visualization of radioactivity within the human body and is widely used for clinical purposes. In SPECT, image quality is compromised by several factors including photon attenuation, photon scatter, the partial volume effect, and motion artefacts. These variables also confound the capacity of SPECT to quantify the concentration of radioactivity within given volumes of interest in absolute units, e.g. as kilobecquerels per cubic centimetre. In the last decade, considerable technical progress has been achieved in SPECT image reconstruction, involving, in particular, the development of iterative image reconstruction techniques. Furthermore, hybrid cameras integrating a SPECT camera with an X-ray CT scanner have become commercially available. These systems allow the acquisition of SPECT and CT datasets registered to each other with a high anatomical accuracy. First studies have shown that iterative SPECT image reconstruction techniques incorporating information from SPECT/CT image datasets greatly increase the accuracy of SPECT in quantifying radioactivity concentrations in phantoms and also in humans. This new potential of SPECT may improve not only diagnostic accuracy, but also dosimetry for internal radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bockisch A, Freudenberg LS, Schmidt D, Kuwert T. Hybrid Imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. Semin Nucl Med. 2009;39:276–89.

    Article  PubMed  Google Scholar 

  2. von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and future directions. Radiology. 2006;238:405–22. doi:10.1148/radiol.2382041977.

    Article  Google Scholar 

  3. Jaszczak RJ, Greer KL, Floyd Jr CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med. 1984;25:893–900.

    PubMed  CAS  Google Scholar 

  4. Koral KF, Wang X, Rogers WL, Clinthorne NH, Wang X. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med. 1988;29:195–202.

    PubMed  CAS  Google Scholar 

  5. Frey EC, Tsui BMW. Modeling the scatter response function in inhomogeneous scattering media for SPECT. IEEE Trans Nucl Sci. 1994;41:1585–93.

    Article  Google Scholar 

  6. LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. Nucl Sci IEEE Trans. 1994;41:2793–9.

    Article  Google Scholar 

  7. Blankespoor SC, Xu X, Kaiki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. Nucl Sci IEEE Trans. 1996;43:2263–74.

    Article  Google Scholar 

  8. Römer W, Reichel N, Vija HA, Nickel I, Hornegger J, Bautz W, et al. Isotropic reconstruction of SPECT data using OSEM3D: correlation with CT. Acad Radiol. 2006;13:496–502. doi:10.1016/j.acra.2005.12.004.

    Article  PubMed  Google Scholar 

  9. El Fakhri GN, Buvat I, Pélégrini M, Benali H, Almeida P, Bendriem B, et al. Respective roles of scatter, attenuation, depth-dependent collimator response and finite spatial resolution in cardiac single-photon emission tomography quantitation: a Monte Carlo study. Eur J Nucl Med Mol Imaging. 1999;26:437–46. doi:10.1007/s002590050409.

    Article  Google Scholar 

  10. Kessler RM, Ellis JRJ, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr. 1984;8:514–22.

    Article  PubMed  CAS  Google Scholar 

  11. Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med. 2000;27:161–9.

    Article  PubMed  CAS  Google Scholar 

  12. Schelbert HR, Hoh CK, Royal HD, Brown M, Dahlbom MN, Dehdashti F, et al. Procedure guideline for tumor imaging using fluorine-18-FDG. J Nucl Med. 1998;39:1302–5.

    PubMed  CAS  Google Scholar 

  13. Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50 Suppl 1:11S–20S. doi:10.2967/jnumed.108.057182.

    Article  PubMed  CAS  Google Scholar 

  14. Germain P, Baruthio J, Roul G, Dumitresco B. First-pass MRI compartmental analysis at the chronic stage of infarction: myocardial flow reserve parametric map. Comput Cardiol. 2000;2000:675–8.

    Google Scholar 

  15. Lewis DH, Bluestone JP, Savina M, Zoller WH, Meshberg EB, Minoshima S. Imaging cerebral activity in recovery from chronic traumatic brain injury: a preliminary report. J Neuroimaging. 2006;16:272–7. doi:10.1111/j.1552-6569.2006.00034.x.

    Article  PubMed  Google Scholar 

  16. Sidoti C, Agrillo U. Chronic cortical stimulation for amyotropic lateral sclerosis: a report of four consecutive operated cases after a 2-year follow-up: technical case report. Neurosurgery. 2006;58:E384. doi:10.1227/01.NEU.0000195115.30783.3A.

    Article  PubMed  Google Scholar 

  17. Gullberg GT, Reutter BW, Sitek A, Maltz JS, Budinger TF. Dynamic single photon emission computed tomography – basic principles and cardiac applications. Phys Med Biol. 2010;55:R111.

    Article  PubMed  Google Scholar 

  18. Gilland DR, Jaszczak RJ, Liang Z, Greer KL, Coleman RE. Quantitative SPECT brain imaging: effects of attenuation and detector response. Nuclear Science Symposium and Medical Imaging Conference, 1991, Conference Record of the 1991 IEEE. 1991;3:1723–27.

  19. Rosenthal MS, Cullom J, Hawkins W, Moore SC, Tsui BMW, Yester M. Quantitative SPECT imaging: a review and recommendations by the Focus Committee of the Society of Nuclear Medicine Computer and Instrumentation Council. J Nucl Med. 1995;36:1489–513.

    PubMed  CAS  Google Scholar 

  20. Tsui BM, Frey EC, Zhao X, Lalush DS, Johnston RE, McCartney WH. The importance and implementation of accurate 3D compensation methods for quantitative SPECT. Phys Med Biol. 1994;39:509–30.

    Article  PubMed  CAS  Google Scholar 

  21. Kohli V, King MA, Glick SJ, Pan TS. Comparison of frequency-distance relationship and Gaussian-diffusion-based methods of compensation for distance-dependent spatial resolution in SPECT imaging. Phys Med Biol. 1998;43:1025–37.

    Article  PubMed  CAS  Google Scholar 

  22. Kohli V, King MA, Tin-Su P, Glick SJ. Compensation for distance-dependent resolution in cardiac-perfusion SPECT: impact on uniformity of wall counts and wall thickness. Nucl Sci IEEE Trans. 1998;45:1104–10.

    Article  Google Scholar 

  23. Pretorius PH, King MA, Pan TS, de Vries DJ, Glick SJ, Byrne CL. Reducing the influence of the partial volume effect on SPECT activity quantitation with 3D modelling of spatial resolution in iterative reconstruction. Phys Med Biol. 1998;43:407–20.

    Article  PubMed  CAS  Google Scholar 

  24. Frey EC, Tsui BM. Collimator-detector response compensation in SPECT. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2005. p. 141–66.

    Google Scholar 

  25. Chang L-T. A method for attenuation correction in radionuclide computed tomography. Nucl Sci IEEE Trans. 1978;25:638–43.

    Article  Google Scholar 

  26. Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med. 2003;44:291–315.

    PubMed  Google Scholar 

  27. Chen J, Caputlu-Wilson S, Shi H, Galt J, Faber T, Garcia E. Automated quality control of emission-transmission misalignment for attenuation correction in myocardial perfusion imaging with SPECT-CT systems. J Nucl Cardiol. 2006;13:43–9. doi:10.1016/j.nuclcard.2005.11.007.

    Article  PubMed  Google Scholar 

  28. Koral KF, Clinthorne NH, Rogers WL. Improving emission-computed-tomography quantification by Compton-scatter rejection through offset windows. Nucl Instrum Methods Phys Res Sect A. 1986;242:610–4.

    Article  Google Scholar 

  29. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. Med Imaging IEEE Trans. 1991;10:408–12.

    Article  CAS  Google Scholar 

  30. Zaidi H, Koral K. Scatter correction strategies in emission tomography. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 205–35.

    Google Scholar 

  31. Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol. 2008;53:4595–604.

    Article  PubMed  CAS  Google Scholar 

  32. Vandervoort E, Celler A, Harrop R. Implementation of an iterative scatter correction, the influence of attenuation map quality and their effect on absolute quantitation in SPECT. Phys Med Biol. 2007;52:1527–45.

    Article  PubMed  Google Scholar 

  33. Wells RG, Celler A, Harrop R. Analytical calculation of photon distributions in SPECT projections. Nucl Sci IEEE Trans. 1998;45:3202–14.

    Article  CAS  Google Scholar 

  34. Floyd CE, Jaszczak RJ, Harris CC, Coleman RE. Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. Phys Med Biol. 1984;29:1217–30.

    Article  PubMed  CAS  Google Scholar 

  35. Ljungberg M, Strand S-E. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med. 1990;31:1560–7.

    PubMed  CAS  Google Scholar 

  36. Frey EC, Tsui BM. Parameterization of the scatter response function in SPECT imaging using Monte Carlo simulation. Nucl Sci IEEE Trans. 1990;37:1308–15.

    Article  CAS  Google Scholar 

  37. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 3rd ed. Philadelphia: Elsevier; 2003.

    Google Scholar 

  38. Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multipinhole collimation. Nucl Sci IEEE Trans. 2003;50:315–20.

    Article  Google Scholar 

  39. Branderhorst W, Vastenhouw B, van der Have F, Blezer E, Bleeker W, Beekman F. Targeted multi-pinhole SPECT. Eur J Nucl Med Mol Imaging. 2011;38:552–561.

    Article  Google Scholar 

  40. Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3:299–308.

    Article  PubMed  CAS  Google Scholar 

  41. Chen CH, Muzic Jr RF, Nelson AD, Adler LP. A nonlinear spatially variant object-dependent system model for prediction of partial volume effects and scatter in PET. Med Imaging IEEE Trans. 1998;17:214–27.

    Article  CAS  Google Scholar 

  42. Seo Y, Aparici CM, Cooperberg MR, Konety BR, Hawkins RA. In vivo tumor grading of prostate cancer using quantitative 111In-capromab pendetide SPECT/CT. J Nucl Med. 2009;51:31–6. doi:10.2967/jnumed.109.067108.

    Article  PubMed  Google Scholar 

  43. Hutton BF, Lau YH. Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT. Phys Med Biol. 1998;43:1679–93.

    Article  PubMed  CAS  Google Scholar 

  44. Pretorius PH, King MA. Diminishing the impact of the partial volume effect in cardiac SPECT perfusion imaging. Med Phys. 2009;36:105–15.

    Article  PubMed  Google Scholar 

  45. Da Silva AJ, Tang HR, Wong KH, Wu MC, Dae MW, Hasegawa BH. Absolute quantification of regional myocardial uptake of 99mTc-Sestamibi with SPECT: experimental validation in a porcine model. J Nucl Med. 2001;42:772–9.

    PubMed  Google Scholar 

  46. Tang HR, Brown JK, Hasegawa BH. Use of X-ray CT-defined regions of interest for the determination of SPECT recovery coefficients. Nuclear Science Symposium, 1996 Conference Record, 1996 IEEE. 1996;3:1840–44.

  47. Rousset O, Ma Y, Kamber M, Evans AC. 3D simulations of radiotracer uptake in deep nuclei of human brain. Comput Med Imaging Graph. 1993;17:373–9.

    Article  PubMed  CAS  Google Scholar 

  48. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med. 1998;39:904–11.

    PubMed  CAS  Google Scholar 

  49. Du Y, Tsui BM, Frey EC. Partial volume effect compensation for quantitative brain SPECT imaging. Med Imaging IEEE Trans. 2005;24:969–76.

    Article  Google Scholar 

  50. Soret M, Koulibaly PM, Darcourt J, Hapdey S, Buvat I. Quantitative accuracy of dopaminergic neurotransmission imaging with 123I SPECT. J Nucl Med. 2003;44:1184–93.

    PubMed  CAS  Google Scholar 

  51. National Electrical Manufacturers Association. Performance measurements of gamma cameras. NEMA NU 1–2007. Rosslyn, VA: National Electrical Manufacturers Association. 2007.

  52. Dewaraja Y, Ljungberg M, Koral K. Effects of dead time and pile up on quantitative SPECT for I-131 dosimetric studies. J Nucl Med. 2008;49(Suppl 1):47P.

    Google Scholar 

  53. Geworski L, Schaefer A, Knoop BO, Pinkert J, Plotkin M, Kirsch CM. Physikalische Aspekte szintigraphisch basierter Dosimetrie bei nuklearmedizinischen Therapien. Nuklearmedizin. 2010;49:79–123.

    Article  Google Scholar 

  54. Dewaraja YK, Schipper MJ, Roberson PL, Wilderman SJ, Amro H, Regan DD, et al. 131I-Tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med. 2010;51:1155–62. doi:10.2967/jnumed.110.075176.

    Article  PubMed  Google Scholar 

  55. Sandström M, Garske U, Granberg D, Sundin A, Lundqvist H. Individualized dosimetry in patients undergoing therapy with (177)Lu-DOTA-D-Phe (1)-Tyr (3)-octreotate. Eur J Nucl Med Mol Imaging. 2010;37:212–25. doi:10.1007/s00259-009-1216-8.

    Article  PubMed  Google Scholar 

  56. Flux G, Bardies M, Monsieurs M, Savolainen S, Strands SE, Lassmann M. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys. 2006;16:47–59.

    PubMed  Google Scholar 

  57. Du Y, Tsui BM, Frey EC. Model-based compensation for quantitative 123I brain SPECT imaging. Phys Med Biol. 2006;51:1269–82.

    Article  PubMed  Google Scholar 

  58. Da Silva AJ, Tang HR, Wu MC, Hasegawa BH. Absolute quantitation of myocardial activity in phantoms. Nucl Sci IEEE Trans. 1999;46:659–66.

    Article  Google Scholar 

  59. Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010;51:921–8. doi:10.2967/jnumed.109.071571.

    Article  PubMed  Google Scholar 

  60. Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol. 2008;53:3099–112.

    Article  PubMed  Google Scholar 

  61. Almeida P, Ribeiro MJ, Bottlaender M, Loc’h C, Langer O, Strul D, et al. Absolute quantitation of iodine-123 epidepride kinetics using single-photon emission tomography: comparison with carbon-11 epidepride and positron emission tomography. Eur J Nucl Med Mol Imaging. 1999;26:1580–8. doi:10.1007/s002590050498.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Ritt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritt, P., Vija, H., Hornegger, J. et al. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging 38 (Suppl 1), 69–77 (2011). https://doi.org/10.1007/s00259-011-1770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1770-8

Keywords

Navigation