Skip to main content

Advertisement

Log in

Three-dimensional radiobiological dosimetry (3D-RD) with 124I PET for 131I therapy of thyroid cancer

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Radioiodine therapy of thyroid cancer was the first and remains among the most successful radiopharmaceutical (RPT) treatments of cancer although its clinical use is based on imprecise dosimetry. The positron emitting radioiodine, 124I, in combination with positron emission tomography (PET)/CT has made it possible to measure the spatial distribution of radioiodine in tumors and normal organs at high resolution and sensitivity. The CT component of PET/CT has made it simpler to match the activity distribution to the corresponding anatomy. These developments have facilitated patient-specific dosimetry (PSD), utilizing software packages such as three-dimensional radiobiological dosimetry (3D-RD), which can account for individual patient differences in pharmacokinetics and anatomy. We highlight specific examples of such calculations and discuss the potential impact of 124I PET/CT on thyroid cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hellman S, Devita VT, Rosenberg SA. Principles of cancer management: radiation therapy. Cancer: principles & practice of oncology. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2001. p. 265–88.

    Google Scholar 

  2. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19(11):1167–214.

    Article  PubMed  Google Scholar 

  3. Van Nostrand D, Atkins F, Yeganeh F, Acio E, Bursaw R, Wartofsky L. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid 2002;12(2):121–34.

    Article  PubMed  Google Scholar 

  4. Holst JP, Burman KD, Atkins F, Umans JG, Jonklaas J. Radioiodine therapy for thyroid cancer and hyperthyroidism in patients with end-stage renal disease on hemodialysis. Thyroid 2005;15(12):1321–31.

    Article  PubMed  CAS  Google Scholar 

  5. Driedger AA, Quirk S, McDonald TJ, Ledger S, Gray D, Wall W, et al. A pragmatic protocol for I-131 rhTSH-stimulated ablation therapy in patients with renal failure. Clin Nucl Med 2006;31(8):454–7.

    Article  PubMed  CAS  Google Scholar 

  6. Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004;45(8):1366–72.

    PubMed  CAS  Google Scholar 

  7. Jentzen W, Hobbs RF, Stahl A, Knust J, Sgouros G, Bockisch A. Pre-therapeutic (124)I PET(/CT) dosimetry confirms low average absorbed doses per administered (131)I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2010;37(5):884–95.

    Article  PubMed  CAS  Google Scholar 

  8. Chiavassa S, Aubineau-Lanièce I, Bitar A, Lisbona A, Barbet J, Franck D, et al. Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted radiotherapy based on the Monte Carlo MCNPX code. Phys Med Biol 2006;51(3):601–16.

    Article  PubMed  CAS  Google Scholar 

  9. Flux GD, Webb S, Ott RJ, Chittenden SJ, Thomas R. Three-dimensional dosimetry for intralesional radionuclide therapy using mathematical modeling and multimodality imaging. J Nucl Med 1997;38(7):1059–66.

    PubMed  CAS  Google Scholar 

  10. Furhang EE, Chui CS, Kolbert KS, Larson SM, Sgouros G. Implementation of a Monte Carlo dosimetry method for patient-specific internal emitter therapy. Med Phys 1997;24(7):1163–72.

    Article  PubMed  CAS  Google Scholar 

  11. Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, et al. Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 1997;38(2):301–8.

    PubMed  CAS  Google Scholar 

  12. Behr TM, Sharkey RM, Sgouros G, Blumenthal RD, Dunn RM, Kolbert K, et al. Overcoming the nephrotoxicity of radiometal-labeled immunoconjugates: improved cancer therapy administered to a nude mouse model in relation to the internal radiation dosimetry. Cancer 1997;80(12 Suppl):2591–610.

    Article  PubMed  CAS  Google Scholar 

  13. Tagesson M, Ljungberg M, Strand SE. A Monte-Carlo program converting activity distributions to absorbed dose distributions in a radionuclide treatment planning system. Acta Oncol 1996;35(3):367–72.

    Article  PubMed  CAS  Google Scholar 

  14. Sgouros G, Kolbert KS, Zaidi H. The three-dimensional internal dosimetry software package, 3D-ID. In: Therapeutic applications of Monte Carlo calculations in nuclear medicine. Philadelphia: Institute of Physics; 2002.

    Google Scholar 

  15. Kolbert KS, Pentlow KS, Pearson JR, Sheikh A, Finn RD, Humm JL, et al. Prediction of absorbed dose to normal organs in thyroid cancer patients treated with 131I by use of 124I PET and 3-dimensional internal dosimetry software. J Nucl Med 2007;48(1):143–9.

    PubMed  CAS  Google Scholar 

  16. Sgouros G, Barest G, Thekkumthala J, Chui C, Mohan R, Bigler RE, et al. Treatment planning for internal radionuclide therapy: three-dimensional dosimetry for nonuniformly distributed radionuclides. J Nucl Med 1990;31(11):1884–91.

    PubMed  CAS  Google Scholar 

  17. Mohan R, Barest G, Brewster LJ, Chui CS, Kutcher GJ, Laughlin JS, et al. A comprehensive three-dimensional radiation treatment planning system. Int J Radiat Oncol Biol Phys 1988;15(2):481–95.

    Article  PubMed  CAS  Google Scholar 

  18. Prideaux AR, Song H, Hobbs RF, He B, Frey EC, Ladenson PW, et al. Three-dimensional radiobiologic dosimetry: application of radiobiologic modeling to patient-specific 3-dimensional imaging-based internal dosimetry. J Nucl Med 2007;48(6):1008–16.

    Article  PubMed  Google Scholar 

  19. Fowler JF. 21 years of biologically effective dose. Br J Radiol 2010;83(991):554–68.

    Article  PubMed  CAS  Google Scholar 

  20. O’Donoghue JA. Implications of nonuniform tumor doses for radioimmunotherapy. J Nucl Med 1999;40(8):1337–41.

    PubMed  Google Scholar 

  21. Dale R. Use of the linear-quadratic radiobiological model for quantifying kidney response in targeted radiotherapy. Cancer Biother Radiopharm 2004;19(3):363–70.

    Article  PubMed  Google Scholar 

  22. Dale R, Carabe-Fernandez A. The radiobiology of conventional radiotherapy and its application to radionuclide therapy. Cancer Biother Radiopharm 2005;20(1):47–51.

    Article  PubMed  CAS  Google Scholar 

  23. Dale RG. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 1985;58(690):515–28.

    Article  PubMed  CAS  Google Scholar 

  24. Baechler S, Hobbs RF, Prideaux AR, Wahl RL, Sgouros G. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry. Med Phys 2008;35(3):1123–34.

    Article  PubMed  Google Scholar 

  25. Hobbs RF, Sgouros G. Calculation of the biological effective dose for piecewise defined dose-rate fits. Med Phys 2009;36(3):904–7.

    Article  PubMed  Google Scholar 

  26. Hobbs RF, Wahl RL, Lodge MA, Javadi MS, Cho SY, Chien DT, et al. 124I PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med 2009;50(11):1844–7.

    Article  PubMed  Google Scholar 

  27. Zaider M, Hanin L. Biologically-equivalent dose and long-term survival time in radiation treatments. Phys Med Biol 2007;52(20):6355–62.

    Article  PubMed  Google Scholar 

  28. Freudenberg LS, Jentzen W, Müller SP, Bockisch A. Disseminated iodine-avid lung metastases in differentiated thyroid cancer: a challenge to 124I PET. Eur J Nucl Med Mol Imaging 2008;35(3):502–8.

    Article  PubMed  CAS  Google Scholar 

  29. Kolbert KS, Hamacher KA, Jurcic JG, Scheinberg DA, Larson SM, Sgouros G. Parametric images of antibody pharmacokinetics in Bi213-HuM195 therapy of leukemia. J Nucl Med 2001;42(1):27–32.

    PubMed  CAS  Google Scholar 

  30. Stabin MG, Sparks RB. OLINDA: PC-based software for biokinetic analysis and internal dose calculations in nuclear medicine. J Nucl Med 2003;44(5):103P.

    Google Scholar 

  31. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46(6):1023–7.

    PubMed  Google Scholar 

  32. Amro H, Wilderman SJ, Dewaraja YK, Roberson PL. Methodology to incorporate biologically effective dose and equivalent uniform dose in patient-specific 3-dimensional dosimetry for non-Hodgkin lymphoma patients targeted with 131I-tositumomab therapy. J Nucl Med 2010;51(4):654–9.

    Google Scholar 

  33. Dewaraja YK, Schipper MJ, Roberson PL, et al. 131I-tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling. J Nucl Med 2010;51(7):1155–62.

    Google Scholar 

  34. Maxon HR, Englaro EE, Thomas SR, Hertzberg VS, Hinnefeld JD, Chen LS, et al. Radioiodine-131 therapy for well-differentiated thyroid cancer—a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med 1992;33(6):1132–6.

    PubMed  Google Scholar 

  35. Thomas SR, Maxon HR, Kereiakes JG. In vivo quantitation of lesion radioactivity using external counting methods. Med Phys 1976;03(04):253–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Sgouros.

Additional information

Supported by NIH NCI grant No. R01 CA116477.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sgouros, G., Hobbs, R.F., Atkins, F.B. et al. Three-dimensional radiobiological dosimetry (3D-RD) with 124I PET for 131I therapy of thyroid cancer. Eur J Nucl Med Mol Imaging 38 (Suppl 1), 41–47 (2011). https://doi.org/10.1007/s00259-011-1769-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1769-1

Keywords

Navigation