Skip to main content
Log in

Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to retrospectively evaluate whether the red marrow (RM) takes up 111In-diethylenetriaminepentaacetic acid (DTPA)-D-Phe1-octreotide and 86Y-DOTATOC and to assess the correlation between the RM absorbed doses and platelet count reduction as a biological dose estimate.

Methods

Data from 12 patients who underwent at 24 h p.i. high statistics 111In single photon emission computed tomography (SPECT) and 86Y positron emission tomography (PET) acquisitions of the chest were analysed. Uptake was measured on >7 cm spine length and converted to total RM uptake using standard RM distribution in man. RM absorbed doses were calculated assuming specific RM uptake and using the plasma and remainder of the body models. RM doses were correlated with the platelet count reduction at 4 weeks. In vitro experiments explored the metabolism of 111In-DTPA-D-Phe1-octreotide and 90Y-DOTATOC in plasma.

Results

The correlation between the uptake of both tracers was excellent (R = 0.80), indicating that RM uptake of 86Y-DOTATOC reflects a real physiological process and not reconstruction artefacts. The kinetics of 86Y-DOTATOC RM activity was different than that in blood and tumours, with no activity at 4 h p.i. indicating that the uptake is not somatostatin receptor dependent. In vitro experiments showed a transchelation of both radiometals to free transferrin that could explain the RM uptake. In patients without chemotherapy and with a normal platelet count recovery, a good correlation (R = 0.96) was found between the RM doses and the platelet count reduction at the nadir.

Conclusion

These experimental facts support the existence of a true RM uptake likely related to transchelation of the radiometal to transferrin. RM uptake correlates well with the observed acute RM toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brans B, Linden O, Giammarile F, Tennvall J, Punt C. Clinical applications of newer radionuclide therapies. Eur J Cancer 2006;42:994–1003.

    Article  PubMed  CAS  Google Scholar 

  2. Flux G, Bardies M, Monsieurs M, Savolainen S, Strand SE, Lassmann M, et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 2006;16:47–59.

    PubMed  Google Scholar 

  3. Flux G, Bardies M, Chiesa C, Monsieurs M, Savolainen S, Strand SE, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging 2007;34:1699–700.

    Article  PubMed  Google Scholar 

  4. Brans B, Bodei L, Giammarile F, Linden O, Luster M, Oyen WJ, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging 2007;34:772–86.

    Article  PubMed  CAS  Google Scholar 

  5. Sgouros G, Frey E, Wahl R, He B, Prideaux A, Hobbs R. Three-dimensional imaging-based radiobiological dosimetry. Semin Nucl Med 2008;38:321–34.

    Article  PubMed  Google Scholar 

  6. Stabin MG, Brill AB. State of the art in nuclear medicine dose assessment. Semin Nucl Med 2008;38:308–20.

    Article  PubMed  Google Scholar 

  7. Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 2005;46:99S–106S.

    PubMed  CAS  Google Scholar 

  8. Wessels BW, Konijnenberg MW, Dale RG, Breitz HB, Cremonesi M, Meredith RF, et al. MIRD pamphlet No. 20: the effect of model assumptions on kidney dosimetry and response—implications for radionuclide therapy. J Nucl Med 2008;49:1884–99.

    Article  PubMed  Google Scholar 

  9. Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med 2005;46:92S–8S.

    PubMed  CAS  Google Scholar 

  10. Cremonesi M, Ferrari M, Bodei L, Tosi G, Paganelli G. Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med 2006;47:1467–75.

    PubMed  CAS  Google Scholar 

  11. Forrer F, Krenning EP, Kooij PP, Bernard BF, Konijnenberg M, Bakker WH, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0), Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging 2009;36:1138–46.

    Article  PubMed  CAS  Google Scholar 

  12. Hnatowich DJ, Griffin TW, Kosciuczyk C, Rusckowski M, Childs RL, Mattis JA, et al. Pharmacokinetics of an indium-111-labeled monoclonal antibody in cancer patients. J Nucl Med 1985;26:849–58.

    PubMed  CAS  Google Scholar 

  13. Cremonesi M, Ferrari M, Chinol M, Stabin MG, Grana C, Prisco G, et al. Three-step radioimmunotherapy with yttrium-90 biotin: dosimetry and pharmacokinetics in cancer patients. Eur J Nucl Med 1999;26:110–20.

    Article  PubMed  CAS  Google Scholar 

  14. Meares CF, Moi MK, Diril H, Kukis DL, McCall MJ, Deshpande SV, et al. Macrocyclic chelates of radiometals for diagnosis and therapy. Br J Cancer Suppl 1990;10:21–6.

    PubMed  CAS  Google Scholar 

  15. Wu C, Virzi F, Hnatowich DJ. Investigations of N-linked macrocycles for 111In and 90Y labeling of proteins. Int J Rad Appl Instrum B 1992;19:239–44.

    PubMed  Google Scholar 

  16. Hnatowich DJ, Virzi F, Doherty PW. DTPA-coupled antibodies labeled with yttrium-90. J Nucl Med 1985;26:503–9.

    PubMed  CAS  Google Scholar 

  17. de Klerk JMH, van Dieren EB, van het Schip AD, Hoekstra A, Zonnenberg BA, van Dijk A, et al. Bone marrow absorbed dose of rhenium-186-HEDP and the relationship with decreased platelet counts. J Nucl Med 1996;37:38–41.

    PubMed  Google Scholar 

  18. Turner JH, Claringbold PG. A phase II study of treatment of painful multifocal skeletal metastases with single and repeated dose samarium-153 ethylenediaminetetramethylene phosphonate. Eur J Cancer 1991;27:1084–6.

    Article  PubMed  CAS  Google Scholar 

  19. Langham WH. Radiobiological factors in manned space flight. Washington DC: National Academy Press; 1967.

    Google Scholar 

  20. Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G, EANM Dosimetry Committee, et al. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging 2010;37:1238–50.

    Article  PubMed  Google Scholar 

  21. Lassmann M, Chiesa C, Flux G, Bardiès M, EANM Dosimetry Committee, et al. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging 2011;38:192–200. doi:10.1007/s00259-010-1549-3

    Google Scholar 

  22. Walrand S, Jamar F, Mathieu I, De Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. Eur J Nucl Med Mol Imaging 2003;30:354–61.

    Article  PubMed  CAS  Google Scholar 

  23. Walrand SH, van Elmbt LR, Pauwels S. A non-negative fast multiplicative algorithm in 3D scatter-compensated SPET reconstruction. Eur J Nucl Med 1996;23:1521–6.

    Article  PubMed  CAS  Google Scholar 

  24. Cristy M. Active bone marrow distribution as a function of age in humans. Phys Med Biol 1981;26:389–400.

    Article  PubMed  CAS  Google Scholar 

  25. Stabin MG, Eckerman KF, Bolch WE, Bouchet LG, Patton PW. Evolution and status of bone and marrow dose models. Cancer Biother Radiopharm 2002;17:427–33.

    Article  PubMed  CAS  Google Scholar 

  26. Shih WJ, Van Wyk C. Tc-99m depreotide SPECT demonstrates photon-deficiency in the thoracic vertebrae after adjunct radiation therapy of lung cancer: correlation with MRI and bone scintigraphy. Ann Nucl Med 2003;17:245–8.

    Article  PubMed  Google Scholar 

  27. Barone R, Walrand S, Leveque P, Pauwels S, Jamar F. Red marrow toxicity after therapy with radiolabelled somatostatin analogues: a possible role of plasma protein binding. Eur J Nucl Med 2003;30:S232.

    Article  Google Scholar 

  28. Hauser W, Atkins HL, Nelson KG, Richards P. Technetium-99m DTPA: a new radiopharmaceutical for brain and kidney scanning. Radiology 1970;94:679–84.

    PubMed  CAS  Google Scholar 

  29. Moerlein SM, Welch MJ. The chemistry of gallium and indium as related to radiopharmaceutical production. Int J Nucl Med Biol 1981;8:277–87.

    Article  PubMed  CAS  Google Scholar 

  30. Stern HS, Goodwin DA, Scheffel D, Wagner HN, Kramer HH. In 113m for blood-pool and brain scanning. Nucleonics 1967;25:62–8.

    Google Scholar 

  31. Kroll H, Korman S, Siegel E, Hart HE, Rosoff B, Spencer H, et al. Excretion of yttrium and lanthanum chelates of cyclohexane 1,2-trans diamine tetraacetic acid and diethylenetriamine pentaacetic acid in man. Nature 1957;180:919–20.

    Article  PubMed  CAS  Google Scholar 

  32. Jeffcoat MK, McNeil BJ, Davis MA. Indium and iron as tracers for erythroid precursors. J Nucl Med 1978;19:496–500.

    PubMed  CAS  Google Scholar 

  33. Goodwin DA, Sundeberg MW, Diamanti C et al. 111In-labeled radiopharmaceuticals and their clinical use. In: Subramanian G, Rhodes BA, Cooper JF, Sood VJ, editors. Radiopharmaceuticals. New York: The Society of Nuclear Medicine; 1975. p. 80.

  34. Welch MJ, Welch TJ. Solution chemistry of carrier-free indium. In: Subramanian G, Rhodes BA, Cooper JF, Sood VJ, editors. Radiopharmaceuticals. New York: The Society of Nuclear Medicine; 1975. p. 73.

  35. Breeman WP, van der Wansem K, Bernard BF, van Gameren A, Erion JL, Visser TJ, et al. The addition of DTPA to [(177)Lu-DOTA(0),Tyr(3)]octreotate prior to administration reduces rat skeleton uptake of radioactivity. Eur J Nucl Med Mol Imaging 2003;30:312–5.

    Article  PubMed  CAS  Google Scholar 

  36. Oomen SP, van Hennik PB, Antonissen C, Lichtenauer-Kaligis EG, Hofland LJ, Lamberts SW, et al. Somatostatin is a selective chemoattractant for primitive (CD34+) hematopoietic progenitor cells. Exp Hematol 2002;30:116–25.

    Article  PubMed  CAS  Google Scholar 

  37. Skikne BS. Serum transferrin receptor. Am J Hematol 2008;83:872–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Philippe Levêque, Muriel Helbo and Coralie Bonnevie for their help in the in vitro studies. 90Y-DOTATOC was kindly provided by Prof. C. Deroose and Dr. B. Vanbilloen (KU Leuven, Louvain, Belgium).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Walrand.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1

(PPT 117 kb)

Supplementary material 2

(DOC 88 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walrand, S., Barone, R., Pauwels, S. et al. Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts. Eur J Nucl Med Mol Imaging 38, 1270–1280 (2011). https://doi.org/10.1007/s00259-011-1744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1744-x

Keywords

Navigation