Skip to main content
Log in

Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

68Ga-DOTA-Tyr3-octreotide positron emission tomography (68Ga-DOTA-TOC PET) has proven to be superior to 111In-DTPA-D-Phe1-octreotide (111In-octreotide) planar scintigraphy and SPECT imaging in neuroendocrine tumours (NETs). Because of these promising results, we compared the accuracy of 123I-metaiodobenzylguanidine (123I-MIBG) imaging with PET in the diagnosis and staging of metastatic phaeochromocytoma and neuroblastoma, referring to radiological imaging as reference standard.

Methods

Three male and eight female patients (age range 3 to 68 years) with biochemically and histologically proven disease were included in this study. Three male and three female patients were suffering from phaeochromocytoma, and five female patients from neuroblastoma. Comparative evaluation included morphological imaging with CT or MRI, functional imaging with 68Ga-DOTA-TOC PET and 123I-MIBG imaging. Imaging results were analysed on a per-patient and on a per-lesion basis.

Results

On a per-patient basis, both 68Ga-DOTA-TOC and 123I-MIBG showed a sensitivity of 100%, when compared with anatomical imaging. In phaeochromocytoma patients, on a per-lesion basis, the sensitivity of 68Ga-DOTA-TOC was 91.7% and that of 123I-MIBG was 63.3%. In neuroblastoma patients, on a per-lesion basis, the sensitivity of 68Ga-DOTA-TOC was 97.2% and that of 123I-MIBG was 90.7%. Overall, in this patient cohort, 68Ga-DOTA-TOC PET identified 257 lesions, anatomical imaging identified 216 lesions, and 123I-MIBG identified only 184 lesions. In this patient group, the overall sensitivity of 68Ga-DOTA-TOC PET on a lesion basis was 94.4% (McNemar p<0.0001) and that of 123I-MIBG was 76.9% (McNemar p<0.0001).

Conclusion

Our analysis in this relatively small patient cohort indicates that 68Ga-DOTA-TOC PET may be superior to 123I-MIBG gamma-scintigraphy and even to the reference CT/MRI technique in providing particularly valuable information for pretherapeutic staging of phaeochromocytoma and neuroblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Franzius C, Hermann K, Weckesser M, Kopka K, Juergens KU, Vormoor J, et al. Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med. 2006;47:1635–42.

    PubMed  Google Scholar 

  2. Pfluger T, Schmied C, Porn U, Leinsinger G, Vollmar C, Dresel S, et al. Integrated imaging using MRI and 123I metaiodobenzylguanidine scintigraphy to improve sensitivity and specificity in the diagnosis of pediatric neuroblastoma. AJR Am J Roentgenol. 2003;181:1115–24.

    PubMed  Google Scholar 

  3. Ilias I, Pacak K. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab. 2004;89:479–91.

    Article  PubMed  CAS  Google Scholar 

  4. Kushner BH. Neuroblastoma: a disease requiring a multitude of imaging studies. J Nucl Med. 2004;45:1172–88.

    PubMed  Google Scholar 

  5. Brink I, Hoegerle S, Klisch J, Bley TA. Imaging of pheochromocytoma and paraganglioma. Fam Cancer. 2005;4:61–8.

    Article  PubMed  CAS  Google Scholar 

  6. Velchik MG, Alavi A, Kressel HY, Engelman K. Localization of pheochromocytoma: MIBG [correction of MIGB], CT, and MRI correlation. J Nucl Med. 1989;30:328–36.

    PubMed  CAS  Google Scholar 

  7. Wiseman GA, Pacak K, O’Dorisio MS, Neumann DR, Waxman AD, Mankoff DA, et al. Usefulness of 123I-MIBG scintigraphy in the evaluation of patients with known or suspected primary or metastatic pheochromocytoma or paraganglioma: results from a prospective multicenter trial. J Nucl Med. 2009;50:1448–54.

    Article  PubMed  CAS  Google Scholar 

  8. Leung A, Shapiro B, Hattner R, Kim E, de Kraker J, Ghazzar N. Specificity of radioiodinated MIBG for neural crest tumors in childhood. J Nucl Med. 1997;38:1352–7.

    PubMed  CAS  Google Scholar 

  9. Taggart DR, Han MM, Quach A, Groshen S, Ye W, Villablanca JG. Comparison of iodine-123 metaiodobenzylguanidine (MIBG) scan and [18F]fluorodeoxyglucose positron emission tomography to evaluate response after iodine-131 MIBG therapy for relapsed neuroblastoma. J Clin Oncol. 2009;27:5343–9.

    Article  PubMed  CAS  Google Scholar 

  10. Sisson JC, Shulkin BL. Nuclear medicine imaging of pheochromocytoma and neuroblastoma. Q J Nucl Med. 1999;43:217–23.

    PubMed  CAS  Google Scholar 

  11. Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev. 2003;24:389–427.

    Article  PubMed  CAS  Google Scholar 

  12. Schilling FH, Bihl H, Jacobsson H, Ambros PF, Martinsson T, Borgström P, et al. Combined (111)In-pentetreotide scintigraphy and (123)I-mIBG scintigraphy in neuroblastoma provides prognostic information. Med Pediatr Oncol. 2000;35:688–91.

    Article  PubMed  CAS  Google Scholar 

  13. Tenenbaum F, Lumbroso J, Schlumberger M, Mure A, Plouin PF, Caillou B, et al. Comparison of radiolabeled octreotide and meta-iodobenzylguanidine (MIBG) scintigraphy in malignant pheochromocytoma. J Nucl Med. 1995;36:1–6.

    PubMed  CAS  Google Scholar 

  14. van der Harst E, de Herder WW, Bruining HA, Bonjer HJ, de Krijger RR, Lamberts SW, et al. [(123)I]metaiodobenzylguanidine and [(111)In]octreotide uptake in benign and malignant pheochromocytomas. J Clin Endocrinol Metab. 2001;86:685–93.

    Article  PubMed  Google Scholar 

  15. Hoegerle S, Nitzsche E, Altehoefer C, Ghanem N, Manz T, Brink I, et al. Pheochromocytomas: detection with 18F DOPA whole body PET – initial results. Radiology. 2002;222:507–12.

    Article  PubMed  Google Scholar 

  16. Hoefnagel CA. Metaiodobenzylguanidine and somatostatin in oncology: role in the management of neural crest tumours. Eur J Nucl Med. 1994;21:561–81.

    PubMed  CAS  Google Scholar 

  17. Decristoforo C, Knopp R, von Guggenberg E, Rupprich M, Dreger T, Hess A, et al. A fully automated synthesis for the preparation of 68Ga-labelled peptides. Nucl Med Commun. 2007;28:870–5.

    Article  PubMed  CAS  Google Scholar 

  18. Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, et al. 131I/123I-metaiodobenzylguanidine (MIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging. 2003;30:132–9.

    Article  Google Scholar 

  19. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging. 2007;34:796–8.

    Article  PubMed  CAS  Google Scholar 

  20. Franzius C, Schmidt M, Hero B, Pfluger T, Hahn K; Deutsche Gesellschaft für Nuklearmedizin (DGN); Neuroblastom-Studiengruppe der Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH). Procedure guidelines for MIBG-scintigraphy in children. Nuklearmediziner. 2008;47:132–8.

    CAS  Google Scholar 

  21. Ilias I, Chen CC, Carrasquillo JA, Whatley M, Ling A, Lazúrová I, et al. Comparison of 6-18F-fluorodopamine PET with 123I-metaiodobenzylguanidine and 111In-pentetreotide scintigraphy in localization of nonmetastatic and metastatic pheochromocytoma. J Nucl Med. 2008;49:1613–9.

    Article  PubMed  Google Scholar 

  22. Rozovsky K, Koplewitz BZ, Krausz Y, Revel-Vilk S, Weintraub M, Chisin R, et al. Added value of SPECT/CT for correlation of MIBG scintigraphy and diagnostic CT in neuroblastoma and pheochromocytoma. AJR Am J Roentgenol. 2008;190:1085–90.

    Article  PubMed  Google Scholar 

  23. Sundin A, Vullierme MP, Kaltsas G, Plöckinger U; Mallorca Consensus Conference participants; European Neuroendocrine Tumor Society. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: radiological examinations. Neuroendocrinology. 2009;90:167–83.

    Article  PubMed  CAS  Google Scholar 

  24. Goo HW. Whole-body MRI of neuroblastoma. Eur J Radiol. 2009;75:306–14

    Article  PubMed  Google Scholar 

  25. Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson JC. Neuroblastoma: positron emission tomography with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine scintigraphy. Radiology. 1996;199:743–50.

    PubMed  CAS  Google Scholar 

  26. Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson JC. Pheochromocytomas: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology. 1999;212:35–41.

    PubMed  CAS  Google Scholar 

  27. Ezuddin S, Fragkaki C. MIBG and FDG PET findings in a patient with malignant pheochromocytoma: a significant discrepancy. Clin Nucl Med. 2005;30:579–81.

    Article  PubMed  Google Scholar 

  28. Timmers HJ, Kozupa A, Chen CC, Carrasquillo JA, Ling A, Eisenhofer G, et al. Superiority of fluorodeoxyglucose positron emission tomography to other functional imaging techniques in the evaluation of metastatic SDHB-associated pheochromocytoma and paraganglioma. J Clin Oncol. 2007;25:2262–9.

    Article  PubMed  Google Scholar 

  29. Sundin A, Garske U, Orlefors H. Nuclear imaging of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab. 2007;21:69–85.

    Article  PubMed  CAS  Google Scholar 

  30. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.

    Article  PubMed  CAS  Google Scholar 

  31. Putzer D, Gabriel M, Henninger B, Kendler D, Uprimny C, Dobrozemsky G, et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med. 2009;50:1214–21.

    Article  PubMed  Google Scholar 

  32. Imani F, Agopian VG, Auerbach MS, Walter MA, Imani F, Benz MR, et al. 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J Nucl Med. 2009;50:513–9.

    Article  PubMed  Google Scholar 

  33. Putzer D, Gabriel M, Kendler D, Henninger B, Knoflach M, Kroiss A, et al. Comparison of 68Ga-DOTA-Tyr3-octreotide and 18F-fluoro-L-dihydroxyphenylalanine positron emission tomography in neuroendocrine tumor patients. Q J Nucl Med Mol Imaging. 2010;54:68–75.

    PubMed  CAS  Google Scholar 

  34. Pagou M, Zerizer I, Al-Nahhas A. Can gallium-68 compounds partly replace (18)F-FDG in PET molecular imaging? Hell J Nucl Med. 2009;12:102–5.

    PubMed  Google Scholar 

  35. Howman-Giles R, Shaw PJ, Uren RF, Chung DK. Neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2007;37:286–302.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Martin Knoflach from the Department of Radiology and Mathias Wochinz from the Department of Nuclear Medicine (Innsbruck Medical University, Austria) for their work on the project. The authors thank Regina Figl for her editorial assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kroiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroiss, A., Putzer, D., Uprimny, C. et al. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur J Nucl Med Mol Imaging 38, 865–873 (2011). https://doi.org/10.1007/s00259-010-1720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1720-x

Keywords

Navigation