Skip to main content

Advertisement

Log in

Detection and quantification of remote microglial activation in rodent models of focal ischaemia using the TSPO radioligand CLINDE

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Neuroinflammation is involved in stroke pathophysiology and might be imaged using radioligands targeting the 18 kDa translocator protein (TSPO).

Methods

We studied microglial reaction in brain areas remote from the primary lesion site in two rodent models of focal cerebral ischaemia (permanent or transient) using [125I]-CLINDE, a promising TSPO single photon emission computed tomography radioligand.

Results

In a mouse model of permanent middle cerebral artery occlusion (MCAO), ex vivo autoradiographic studies demonstrated, besides in the ischaemic territory, accumulation of [125I]-CLINDE in the ipsilateral thalamus with a binding that progressed up to 3 weeks after MCAO. [125I]-CLINDE binding markedly decreased in animals pre-injected with either unlabelled CLINDE or PK11195, while no change was observed with flumazenil pre-treatment, demonstrating TSPO specificity. In rats subjected to transient MCAO, [125I]-CLINDE binding in the ipsilateral thalamus and substantia nigra pars reticulata (SNr) was significantly higher than that in contralateral tissue. Moreover, [125I]-CLINDE binding in the thalamus and SNr was quantitatively correlated to the ischaemic volume assessed by MRI in the cortex and striatum, respectively.

Conclusion

Clinical consequences of secondary neuronal degeneration in stroke might be better treated thanks to the discrimination of neuronal processes using in vivo molecular imaging and potent TSPO radioligands like CLINDE to guide therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol 2006;80(6):308–22.

    Article  CAS  PubMed  Google Scholar 

  2. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 2009;8(4):355–69.

    Article  PubMed  Google Scholar 

  3. Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 2008;118(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  4. Doorduin J, de Vries EF, Dierckx RA, Klein HC. PET imaging of the peripheral benzodiazepine receptor: monitoring disease progression and therapy response in neurodegenerative disorders. Curr Pharm Des 2008;14(31):3297–315.

    Article  CAS  PubMed  Google Scholar 

  5. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, et al. Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 2006;27(8):402–9.

    Article  CAS  PubMed  Google Scholar 

  6. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U S A 1992;89(8):3170–4.

    Article  CAS  PubMed  Google Scholar 

  7. Jamin N, Neumann JM, Ostuni MA, Vu TK, Yao ZX, Murail S, et al. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol Endocrinol 2005;19(3):588–94.

    Article  CAS  PubMed  Google Scholar 

  8. Lacapère JJ, Papadopoulos V. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids 2003;68(7–8):569–85.

    Article  PubMed  Google Scholar 

  9. Sutter AP, Maaser K, Höpfner M, Barthel B, Grabowski P, Faiss S, et al. Specific ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in human esophageal cancer cells. Int J Cancer 2002;102(4):318–27.

    Article  CAS  PubMed  Google Scholar 

  10. Benavides J, Quarteronet D, Imbault F, Malgouris C, Uzan A, Renault C, et al. Labelling of “peripheral-type” benzodiazepine binding sites in the rat brain by using [3H]PK 11195, an isoquinoline carboxamide derivative: kinetic studies and autoradiographic localization. J Neurochem 1983;41(6):1744–50.

    Article  CAS  PubMed  Google Scholar 

  11. Gerhard A, Schwarz J, Myers R, Wise R, Banati RB. Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study. Neuroimage 2005;24(2):591–5.

    Article  PubMed  Google Scholar 

  12. Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK1195. Neurology 2000;55(7):1052–4.

    CAS  PubMed  Google Scholar 

  13. Price CJ, Wang D, Menon DK, Guadagno JV, Cleij M, Fryer T, et al. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke 2006;37(7):1749–53.

    Article  PubMed  Google Scholar 

  14. Rojas S, Martín A, Arranz MJ, Pareto D, Purroy J, Verdaguer E, et al. Imaging brain inflammation with [(11)C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J Cereb Blood Flow Metab 2007;27(12):1975–86.

    Article  CAS  PubMed  Google Scholar 

  15. Schroeter M, Dennin MA, Walberer M, Backes H, Neumaier B, Fink GR, et al. Neuroinflammation extends brain tissue at risk to vital peri-infarct tissue: a double tracer [11C]PK11195- and [18F]FDG-PET study. J Cereb Blood Flow Metab 2009;29(6):1216–25.

    Article  CAS  PubMed  Google Scholar 

  16. Imaizumi M, Kim HJ, Zoghbi SS, Briard E, Hong J, Musachio JL, et al. PET imaging with [11C]PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat. Neurosci Lett 2007;411(3):200–5.

    Article  CAS  PubMed  Google Scholar 

  17. Martín A, Boisgard R, Thézé B, Van Camp N, Kuhnast B, Damont A, et al. Evaluation of the PBR/TSPO radioligand [(18)F]DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab 2010;30:230–41.

    Article  PubMed  Google Scholar 

  18. Petit-Taboué MC, Baron JC, Barré L, Travère JM, Speckel D, Camsonne R, et al. Brain kinetics and specific binding of [11C]PK 11195 to omega 3 sites in baboons: positron emission tomography study. Eur J Pharmacol 1991;200(2–3):347–51.

    Article  PubMed  Google Scholar 

  19. Shah F, Hume SP, Pike VW, Ashworth S, McDermott J. Synthesis of the enantiomers of [N-methyl-11C]PK 11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol 1994;21(4):573–81.

    Article  CAS  PubMed  Google Scholar 

  20. Dollé F, Luus C, Reynolds A, Kassiou M. Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography. Curr Med Chem 2009;16(22):2899–923.

    Article  PubMed  Google Scholar 

  21. Venneti S, Wang G, Nguyen J, Wiley CA. The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol 2008;67(10):1001–10.

    Article  PubMed  Google Scholar 

  22. Gulyás B, Makkai B, Kása P, Gulya K, Bakota L, Várszegi S, et al. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system. Neurochem Int 2009;54(1):28–36.

    Article  PubMed  Google Scholar 

  23. Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R, et al. Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol 2010;13:943–50.

    Article  CAS  PubMed  Google Scholar 

  24. Boutin H, Chauveau F, Thominiaux C, Grégoire MC, James ML, Trebossen R, et al. 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med 2007;48(4):573–81.

    Article  CAS  PubMed  Google Scholar 

  25. James ML, Fulton RR, Vercoullie J, Henderson DJ, Garreau L, Chalon S, et al. DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med 2008;49(5):814–22.

    Article  CAS  PubMed  Google Scholar 

  26. Endres CJ, Pomper MG, James M, Uzuner O, Hammoud DA, Watkins CC, et al. Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans. J Nucl Med 2009;50(8):1276–82.

    Article  CAS  PubMed  Google Scholar 

  27. Le Pogam A, Vercouillie J, Corcia P, Praline J, Guilloteau D, Baulieu J, et al. Preliminary results of PET with [18F]DPA 714 in humans for detection of microglial activation in amyotrophic lateral sclerosis (ALS). J Nucl Med 2008;49:231P.

    Google Scholar 

  28. Mattner F, Mardon K, Katsifis A. Pharmacological evaluation of [123I]-CLINDE: a radioiodinated imidazopyridine-3-acetamide for the study of peripheral benzodiazepine binding sites (PBBS). Eur J Nucl Med Mol Imaging 2008;35(4):779–89.

    Article  CAS  PubMed  Google Scholar 

  29. Arlicot N, Katsifis A, Garreau L, Mattner F, Vergote J, Duval S, et al. Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroinflammation in a rat model of microglial activation. Eur J Nucl Med Mol Imaging 2008;35(12):2203–11.

    Article  PubMed  Google Scholar 

  30. Mattner F, Katsifis A, Staykova M, Ballantyne P, Willenborg DO. Evaluation of a radiolabelled peripheral benzodiazepine receptor ligand in the central nervous system inflammation of experimental autoimmune encephalomyelitis: a possible probe for imaging multiple sclerosis. Eur J Nucl Med Mol Imaging 2005;32(5):557–63.

    Article  CAS  PubMed  Google Scholar 

  31. Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 1999;19(6):643–51.

    Article  CAS  PubMed  Google Scholar 

  32. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989;20(1):84–91.

    CAS  PubMed  Google Scholar 

  33. Franklin K, Paxinos G. The mouse brain in stereotaxic coordinates. San Diego: Academic; 1997.

  34. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. New York: Academic; 1986.

  35. Watanabe Y, Nakano T, Yutani K, Nishimura H, Kusuoka H, Nakamura H, et al. Detection of viable cortical neurons using benzodiazepine receptor imaging after reversible focal ischaemia in rats: comparison with regional cerebral blood flow. Eur J Nucl Med 2000;27(3):308–13.

    Article  CAS  PubMed  Google Scholar 

  36. Freret T, Bouet V, Leconte C, Roussel S, Chazalviel L, Divoux D, et al. Behavioral deficits after distal focal cerebral ischemia in mice: usefulness of adhesive removal test. Behav Neurosci 2009;123(1):224–30.

    Article  PubMed  Google Scholar 

  37. Ginsberg MD. Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke 2003;34(1):214–23.

    Article  PubMed  Google Scholar 

  38. Kriz J, Lalancette-Hébert M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol 2009;117(5):497–509.

    Article  CAS  PubMed  Google Scholar 

  39. Binkofski F, Seitz RJ, Arnold S, Classen J, Benecke R, Freund HJ. Thalamic metabolism and corticospinal tract integrity determine motor recovery in stroke. Ann Neurol 1996;39(4):460–70.

    Article  CAS  PubMed  Google Scholar 

  40. Seitz RJ, Azari NP, Knorr U, Binkofski F, Herzog H, Freund HJ. The role of diaschisis in stroke recovery. Stroke 1999;30(9):1844–50.

    CAS  PubMed  Google Scholar 

  41. Van Beek J, Chan P, Bernaudin M, Petit E, MacKenzie ET, Fontaine M. Glial responses, clusterin, and complement in permanent focal cerebral ischemia in the mouse. Glia 2000;31(1):39–50.

    Article  PubMed  Google Scholar 

  42. Rupalla K, Allegrini PR, Sauer D, Wiessner C. Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol 1998;96(2):172–8.

    Article  CAS  PubMed  Google Scholar 

  43. Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA. Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci 1995;15(7 Pt 2):5263–74.

    CAS  PubMed  Google Scholar 

  44. Myers R, Manjil LG, Frackowiak RS, Cremer JE. [3H]PK 11195 and the localisation of secondary thalamic lesions following focal ischaemia in rat motor cortex. Neurosci Lett 1991;133(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  45. Radlinska BA, Ghinani SA, Lyon P, Jolly D, Soucy JP, Minuk J, et al. Multimodal microglia imaging of fiber tracts in acute subcortical stroke. Ann Neurol 2009;66(6):825–32.

    Article  PubMed  Google Scholar 

  46. Justicia C, Ramos-Cabrer P, Hoehn M. MRI detection of secondary damage after stroke: chronic iron accumulation in the thalamus of the rat brain. Stroke 2008;39(5):1541–7.

    Article  PubMed  Google Scholar 

  47. Nighoghossian N, Wiart M, Cakmak S, Berthezène Y, Derex L, Cho TH, et al. Inflammatory response after ischemic stroke: a USPIO-enhanced MRI study in patients. Stroke 2007;38(2):303–7.

    Article  PubMed  Google Scholar 

  48. Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005;76(2):77–98.

    Article  CAS  PubMed  Google Scholar 

  49. Dihné M, Block F. Focal ischemia induces transient expression of IL-6 in the substantia nigra pars reticulata. Brain Res 2001;889(1–2):165–73.

    Article  PubMed  Google Scholar 

  50. Loos M, Dihné M, Block F. Tumor necrosis factor-alpha expression in areas of remote degeneration following middle cerebral artery occlusion of the rat. Neuroscience 2003;122(2):373–80.

    Article  CAS  PubMed  Google Scholar 

  51. Revital S, Hagai B, Gadi G. Evidence for the coexistence of segregated and integrated functional connections from the striatum to the substantia nigra in rats. Neuroimage 2008;40(2):451–7.

    Article  PubMed  Google Scholar 

  52. Hara H, Harada K, Sukamoto T. Chronological atrophy after transient middle cerebral artery occlusion in rats. Brain Res 1993;618(2):251–60.

    Article  CAS  PubMed  Google Scholar 

  53. Zaleska MM, Mercado ML, Chavez J, Feuerstein GZ, Pangalos MN, Wood A. The development of stroke therapeutics: promising mechanisms and translational challenges. Neuropharmacology 2009;56(2):329–41.

    Article  CAS  PubMed  Google Scholar 

  54. Jordán J, Segura T, Brea D, Galindo MF, Castillo J. Inflammation as therapeutic objective in stroke. Curr Pharm Des 2008;14(33):3549–64.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by the EC-FP6-project DiMI, LSHB-CT-2005-512146.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Arlicot.

Additional information

Myriam Bernaudin and Sylvie Chalon contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arlicot, N., Petit, E., Katsifis, A. et al. Detection and quantification of remote microglial activation in rodent models of focal ischaemia using the TSPO radioligand CLINDE. Eur J Nucl Med Mol Imaging 37, 2371–2380 (2010). https://doi.org/10.1007/s00259-010-1598-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1598-7

Keywords

Navigation