Skip to main content
Log in

Levodopa and pramipexole effects on presynaptic dopamine PET markers and estimated dopamine release

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Levodopa and dopamine (DA) agonist therapy are two common treatments for Parkinson’s disease (PD). There is controversy about the effects of these treatments on disease progression and imaging markers. Here we used multi-tracer positron emission tomography imaging and a unilateral 6-hydroxydopamine (6-OHDA) rat model of PD to evaluate in vivo the effects of chronic levodopa and pramipexole treatments on measurements of vesicular monoamine transporter type 2 (VMAT2), dopamine transporter (DAT) levels, and on levodopa-induced changes in synaptic DA levels [Δ(DA)].

Methods

Twenty-three unilaterally 6-OHDA lesioned rats underwent an 11C-dihydrotetrabenazine (DTBZ, VMAT2 marker), an 11C-methylphenidate (MP, DAT marker), and a double 11C-raclopride (RAC, D2-type receptor marker) scan. They were assigned to three treatment groups: saline (N = 7), pramipexole (N = 8), and levodopa (N = 8). After 4 weeks of treatment, imaging was repeated.

Results

Results showed (1) a significant treatment effect on DTBZ, with pramipexole decreasing DTBZ binding compared to levodopa, (2) significant side and treatment-striatal side interaction effects for MP, indicating that levodopa tends to decrease MP binding compared to pramipexole, and (3) no treatment effect on Δ(DA).

Conclusion

These data indicate that while chronic dopaminergic pharmacological treatment affects DTBZ and MP binding, it does not affect levodopa-induced changes in synaptic DA level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol 2006;5(6):525–35.

    Article  PubMed  Google Scholar 

  2. Parkinson’s Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002;287:1653–61.

    Article  Google Scholar 

  3. Holloway RG, Shoulson I, Fahn S, Kieburtz K, Lang A, Marek K, et al. Pramipexole vs levodopa as initial treatment for Parkinson disease: a 4-year randomized controlled trial. Arch Neurol 2004;61(7):1044–53.

    Article  PubMed  Google Scholar 

  4. Ahlskog JE. Slowing Parkinson’s disease progression: recent dopamine agonist trials. Neurology 2003;60(3):381–9.

    PubMed  Google Scholar 

  5. Albin RL, Frey KA. Initial agonist treatment of Parkinson disease: a critique. Neurology 2003;60(3):390–4.

    PubMed  Google Scholar 

  6. Guttman M, Stewart D, Hussey D, Wilson A, Houle S, Kish S. Influence of L-dopa and pramipexole on striatal dopamine transporter in early PD. Neurology 2001;56(11):1559–64.

    CAS  PubMed  Google Scholar 

  7. Masuo Y, Pélaprat D, Scherman D, Rostène W. [3H]Dihydrotetrabenazine, a new marker for the visualization of dopaminergic denervation in the rat striatum. Neurosci Lett 1990;114:45–50.

    Article  CAS  PubMed  Google Scholar 

  8. Vander Borght TM, Sima AAF, Kilbourn MR, Desmond TJ, Kuhl DE, Frey K. [3H]methoxytetrabenazine: a high specific activity ligand for estimating monoaminergic neuronal integrity. Neuroscience 1995;68(3):955–62.

    Article  CAS  PubMed  Google Scholar 

  9. Kemmerer ES, Desmond TJ, Albin RL, Kilbourn MR, Frey KA. Treatment effects on nigrostriatal projection integrity in partial 6-OHDA lesions: comparison of L-DOPA and pramipexole. Exp Neurol 2003;183:81–6.

    Article  CAS  PubMed  Google Scholar 

  10. de la Fuente-Fernández R, Furtado S, Guttman M, Furukawa Y, Lee CS, Calne DB, et al. VMAT2 binding is elevated in dopa-responsive dystonia: visualizing empty vesicles by PET. Synapse 2003;49(1):20–8.

    Article  Google Scholar 

  11. de la Fuente-Fernández R, Sossi V, McCormick S, Schulzer M, Ruth TJ, Stoessl AJ. Visualizing vesicular dopamine dynamics in Parkinson’s disease. Synapse 2009;63(8):713–6.

    Article  PubMed  Google Scholar 

  12. Tong J, Wilson AA, Boileau I, Houle S, Kish SJ. Dopamine modulating drugs influence striatal (+)-[11C]DTBZ binding in rats: VMAT2 binding is sensitive to changes in vesicular dopamine concentration. Synapse 2008;62(11):873–6.

    Article  CAS  PubMed  Google Scholar 

  13. de la Fuente-Fernández R, Lu JQ, Sossi V, Jivan S, Schulzer M, Holden JE, et al. Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover. Ann Neurol 2001;49(3):298–303.

    Article  PubMed  Google Scholar 

  14. Cenci MA, Lundblad M. Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem 2006;99(2):381–92.

    Article  CAS  PubMed  Google Scholar 

  15. Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, et al. Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 2006;67(9):1612–7.

    Article  CAS  PubMed  Google Scholar 

  16. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med 2000;342(20):1484–91.

    Article  CAS  PubMed  Google Scholar 

  17. Nadjar A, Gerfen CR, Bezard E. Priming for l-dopa-induced dyskinesia in Parkinson’s disease: a feature inherent to the treatment or the disease? Prog Neurobiol 2009;87(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sossi V, Dinelle K, Topping GJ, Holden JE, Doudet D, Schulzer M, et al. Dopamine transporter relation to levodopa-derived synaptic dopamine in a rat model of Parkinson’s: an in vivo imaging study. J Neurochem 2009;109(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  19. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego: Academic; 1998.

    Google Scholar 

  20. Breese GR, Traylor TD. Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine. Br J Pharmacol 1971;42:88–99.

    CAS  PubMed  Google Scholar 

  21. Kelly PH, Iversen SD. Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur J Pharmacol 1976;40:45–56.

    Article  CAS  PubMed  Google Scholar 

  22. Whishaw IQ, Gorny B, Tran-Nguyen LTL, Casteñeda E, Miklyaeva EI, Pellis SM. Making two movements at once: impairments of movement, posture, and their integration underlie the adult skilled reaching deficit of neonatally dopamine-depleted rats. Behav Brain Res 1994;61:65–77.

    Article  CAS  PubMed  Google Scholar 

  23. Chernoloz O, El Mansari M, Blier P. Sustained administration of pramipexole modifies the spontaneous firing of dopamine, norepinephrine, and serotonin neurons in the rat brain. Neuropsychopharmacology 2009;34(3):651–61.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JS, Lee JS, Im KC, Kim SJ, Kim SY, Lee DS, et al. Performance measurement of the microPET focus 120 scanner. J Nucl Med 2007;48:1527–35.

    Article  PubMed  Google Scholar 

  25. Sossi V, Holden JE, Topping GJ, Camborde ML, Kornelsen R, McCormick S, et al. In vivo measurement of density and affinity of the monoamine vesicular transporter in a unilateral 6-hydroxydopamine rat model of PD. J Cereb Blood Flow Metab 2007;27(7):1407–15.

    Article  CAS  PubMed  Google Scholar 

  26. Schiffer WK, Alexoff DL, Shea C, Logan J, Dewey SL. Development of a simultaneous PET/microdialysis method to identify the optimal dose of 11C-raclopride for small animal imaging. J Neurosci Methods 2005;144(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  27. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 1997;6(4):279–87.

    Article  CAS  PubMed  Google Scholar 

  28. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage 1996;4:153–8.

    Article  CAS  PubMed  Google Scholar 

  29. Zigmond MJ, Stricker EM, Berger TW. Parkinsonism: insights from animal models utilizing neurotoxic agents. In: Coyle JY, editor. Animal models of dementia. New York: Alan R. Liss; 1987. p. 1–38.

    Google Scholar 

  30. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007;27(9):1533–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 2000;47(4):493–503.

    Article  CAS  PubMed  Google Scholar 

  32. Truong JG, Rau KS, Hanson GR, Fleckenstein AE. Pramipexole increases vesicular dopamine uptake: implications for treatment of Parkinson’s neurodegeneration. Eur J Pharmacol 2003;474(2-3):223–6.

    Article  CAS  PubMed  Google Scholar 

  33. Piercey MF, Hoffmann WE, Smith MW, Hyslop DK. Inhibition of dopamine neuron firing by pramipexole, a dopamine D3 receptor-preferring agonist: comparison to other dopamine receptor agonists. Eur J Pharmacol 1996;312(1):35–44.

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez M, Gonzalez S, Morales I, Sabate M, Gonzalez-Hernandez T, Gonzalez-Mora JL. Nigrostriatal cell firing action on the dopamine transporter. Eur J Neurosci 2007;25:2755–65.

    Article  PubMed  Google Scholar 

  35. Sossi V, de la Fuente-Fernández R, Schulzer M, Troiano AR, Ruth TJ, Stoessl AJ. Dopamine transporter relation to dopamine turnover in Parkinson’s disease: a positron emission tomography study. Ann Neurol 2007;62(5):468–74.

    Article  PubMed  Google Scholar 

  36. Wu Q, Reith ME, Walker QD, Kuhn CM, Carroll FI, Garris PA. Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study. J Neurosci 2002;22:6272–81.

    CAS  PubMed  Google Scholar 

  37. Smits SM, Ponnio T, Conneely OM, Burbach JP, Smidt MP. Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur J Neurosci 2003;18:1731–8.

    Article  PubMed  Google Scholar 

  38. de la Fuente-Fernández R, Lim AS, Sossi V, Holden JE, Caine DB, Ruth TJ, et al. Apomorphine-induced changes in synaptic dopamine levels: positron emission tomography evidence for presynaptic inhibition. J Cereb Blood Flow Metab 2001;21:1151–9.

    Article  Google Scholar 

  39. Bordet R, Ridray S, Carboni S, Diaz J, Sokoloff P, Schwartz JC. Induction of dopamine D3 receptor expression as a mechanism of behavioral sensitization to levodopa. Proc Natl Acad Sci U S A 1997;94:3363–7.

    Article  CAS  PubMed  Google Scholar 

  40. Sokoloff P, Diaz J, Le Foll B, Guillin O, Leriche L, Bezard E, et al. The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 2006;5:25–43.

    Article  CAS  PubMed  Google Scholar 

  41. Pan T, Xie W, Jankovic J, Le W. Biological effects of pramipexole on dopaminergic neuron-associated genes: relevance to neuroprotection. Neurosci Lett 2005;377:106–9.

    Article  CAS  PubMed  Google Scholar 

  42. Chiasson K, Daoust B, Levesque D, Martinoli MG. Dopamine D2 agonists, bromocriptine and quinpirole, increase MPP+ -induced toxicity in PC12 cells. Neurotox Res 2006;10:31–42.

    Article  CAS  PubMed  Google Scholar 

  43. Lundblad M, af Bjerkén S, Cenci MA, Pomerleau F, Gerhardt GA, Strömberg I. Chronic intermittent L-DOPA treatment induces changes in dopamine release. J Neurochem 2009;108(4):998–1008.

    Article  PubMed  Google Scholar 

  44. Murer MG, Dziewczapolski G, Menalled LB, García MC, Agid Y, Gershanik O, et al. Chronic levodopa is not toxic for remaining dopamine neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions. Ann Neurol 1998;43(5):561–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CIHR, NSERC, MSFHR and Triumf Life Science.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Sossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sossi, V., Dinelle, K., Schulzer, M. et al. Levodopa and pramipexole effects on presynaptic dopamine PET markers and estimated dopamine release. Eur J Nucl Med Mol Imaging 37, 2364–2370 (2010). https://doi.org/10.1007/s00259-010-1581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1581-3

Keywords

Navigation