Skip to main content

Advertisement

Log in

Lesion dose in differentiated thyroid carcinoma metastases after rhTSH or thyroid hormone withdrawal: 124I PET/CT dosimetric comparisons

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Renal radioiodine excretion is ~50% faster during euthyroidism versus hypothyroidism. We therefore sought to assess lesion dose/GBq of administered 131I activity (LDpA) in iodine-avid metastases (IAM) of differentiated thyroid carcinoma (DTC) in athyreotic patients after recombinant human thyroid-stimulating hormone (rhTSH) versus after thyroid hormone withdrawal (THW).

Methods

We retrospectively compared mean LDpA between groups of consecutive patients (N = 63) receiving 124I positron emission tomography/computed tomography (124I PET/CT) aided by rhTSH (n = 27) or THW (n = 36); we prospectively compared LDpA after these stimulation methods within another individual. Data derived from serial PET scans and one CT scan performed 2–96 h post-124I ingestion. A mixed model analysis of covariance (ANCOVA) calculated the treatment groups’ mean LDpAs adjusting for statistically significant baseline intergroup differences: non-IAM were more prevalent, median IAM count/patient lower in cervical lymph nodes and higher in distant sites, median stimulated thyroglobulin higher, mean cumulative radioiodine activity greater and prior diagnostic scintigraphy more frequent in the rhTSH patients.

Results

Mean LDpAs were: rhTSH group (n = 71 IAM), 30.6 Gy/GBq; THW group (n = 66 IAM), 51.8 Gy/GBq. The difference in group means (rhTSH less THW), −21.2 Gy/GBq, was statistically non-significant (p = 0.1667). However, the 95% confidence interval of that difference (−51.4 to  + 9 Gy/GBq) suggested a trend favouring THW. The within-patient comparison found 2.9- to 10-fold higher LDpAs under THW.

Conclusion

We found some suggestions, but no statistically significant evidence, that rhTSH administration results in a lower radiation dose to DTC metastases than does THW. A large, well-controlled, prospective within-patient study should resolve this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Dohán O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 2003;24:48–77.

    Article  PubMed  Google Scholar 

  2. Bruno R, Ferretti E, Tosi E, Arturi F, Giannasio P, Mattei T, et al. Modulation of thyroid-specific gene expression in normal and nodular human thyroid tissues from adults: an in vivo effect of thyrotropin. J Clin Endocrinol Metab 2005;90:5692–7.

    Article  CAS  PubMed  Google Scholar 

  3. Schlumberger M, Lacroix L, Russo D, Filetti S, Bidart JM. Defects in iodide metabolism in thyroid cancer and implications for the follow-up and treatment of patients. Nat Clin Pract Endocrinol Metab 2007;3:260–9.

    Article  CAS  PubMed  Google Scholar 

  4. Luster M, Felbinger R, Dietlein M, Reiners C. Thyroid hormone withdrawal in patients with differentiated thyroid carcinoma: a one hundred thirty-patient pilot survey on consequences of hypothyroidism and a pharmacoeconomic comparison to recombinant thyrotropin administration. Thyroid 2005;15:1147–55.

    Article  CAS  PubMed  Google Scholar 

  5. Schroeder PR, Haugen BR, Pacini F, Reiners C, Schlumberger M, Sherman SI, et al. A comparison of short-term changes in health-related quality of life in thyroid carcinoma patients undergoing diagnostic evaluation with recombinant human thyrotropin compared with thyroid hormone withdrawal. J Clin Endocrinol Metab 2006;91:878–84.

    Article  CAS  PubMed  Google Scholar 

  6. Borget I, Corone C, Nocaudie M, Allyn M, Iacobelli S, Schlumberger M, et al. Sick leave for follow-up control in thyroid cancer patients: comparison between stimulation with Thyrogen and thyroid hormone withdrawal. Eur J Endocrinol 2007;156:531–8.

    Article  CAS  PubMed  Google Scholar 

  7. Taïeb D, Sebag F, Cherenko M, Baumstarck-Barrau K, Fortanier C, Farman-Ara B, et al. Quality of life changes and clinical outcomes in thyroid cancer patients undergoing radioiodine remnant ablation (RRA) with recombinant human TSH (rhTSH): a randomized controlled study. Clin Endocrinol (Oxf) 2009;71:115–23.

    Article  Google Scholar 

  8. Duntas LH, Biondi B. Short-term hypothyroidism after levothyroxine-withdrawal in patients with differentiated thyroid cancer: clinical and quality of life consequences. Eur J Endocrinol 2007;156:13–9.

    Article  CAS  PubMed  Google Scholar 

  9. Haugen BR, Pacini F, Reiners C, Schlumberger M, Ladenson PW, Sherman SI, et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab 1999;84:3877–85.

    Article  CAS  PubMed  Google Scholar 

  10. Pacini F, Ladenson PW, Schlumberger M, Driedger A, Luster M, Kloos RT, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab 2006;91:926–32.

    Article  CAS  PubMed  Google Scholar 

  11. Luster M, Lippi F, Jarzab B, Perros P, Lassmann M, Reiners C, et al. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer 2005;12:49–64.

    Article  CAS  PubMed  Google Scholar 

  12. Robbins RJ, Driedger A, Magner J, U.S. and Canadian Thyrogen Compassionate Use Program Investigator Group. Recombinant human thyrotropin-assisted radioiodine therapy for patients with metastatic thyroid cancer who could not elevate endogenous thyrotropin or be withdrawn from thyroxine. Thyroid 2006;16:1121–30.

    Article  CAS  PubMed  Google Scholar 

  13. Robbins RJ, Voelker E, Wang W, Macapinlac HA, Larson SM. Compassionate use of recombinant human thyrotropin to facilitate radioiodine therapy: case report and review of literature. Endocr Pract 2000;6:460–4.

    CAS  PubMed  Google Scholar 

  14. Rotman-Pikielny P, Reynolds JC, Barker WC, Yen PM, Skarulis MC, Sarlis NJ. Recombinant human thyrotropin for the diagnosis and treatment of a highly functional metastatic struma ovarii. J Clin Endocrinol Metab 2000;85:237–44.

    Article  CAS  PubMed  Google Scholar 

  15. Song H, He B, Prideaux A, Du Y, Frey E, Kasecamp W, et al. Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases. J Nucl Med 2006;47:1985–94.

    CAS  PubMed  Google Scholar 

  16. de Keizer B, Brans B, Hoekstra A, Zelissen PM, Koppeschaar HP, Lips CJ, et al. Tumour dosimetry and response in patients with metastatic differentiated thyroid cancer using recombinant human thyrotropin before radioiodine therapy. Eur J Nucl Med Mol Imaging 2003;30:367–73.

    Article  PubMed  Google Scholar 

  17. Pötzi C, Moameni A, Karanikas G, Preitfellner J, Becherer A, Pirich C, et al. Comparison of iodine uptake in tumour and nontumour tissue under thyroid hormone deprivation and with recombinant human thyrotropin in thyroid cancer patients. Clin Endocrinol (Oxf) 2006;65:519–23.

    Article  Google Scholar 

  18. Park S-G, Reynolds JC, Brucker-Davis F, Whatley M, McEllin K, Maxted D, et al. Iodine kinetics during I-131 scanning in patients with thyroid cancer: comparison of studies with recombinant human TSH (rhTSH) vs. hypothyroidism [abstract 49]. J Nucl Med 1996;37:15P.

    Google Scholar 

  19. Ladenson PW, Braverman LE, Mazzaferri EL, Brucker-Davis F, Cooper DS, Garber JR, et al. Comparison of administration of recombinant human thyrotropin with withdrawal of thyroid hormone for radioactive iodine scanning in patients with thyroid carcinoma. N Engl J Med 1997;337:888–96.

    Article  CAS  PubMed  Google Scholar 

  20. Freudenberg L, Jentzen W, Görges R, Petrich T, Marlowe RJ, Knust J, et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin 2007;46:121–8.

    CAS  PubMed  Google Scholar 

  21. Fleming I, Cooper JS, Henson DE, Hutter RVP, Kennedy BJ, editors. AJCC cancer staging manual. 5th ed. Philadelphia: Lippincott-Raven; 1997.

    Google Scholar 

  22. Freudenberg L, Bockisch A, Jentzen W. 124I positron emission tomographic dosimetry and positron emission tomography/computed tomography imaging in differentiated thyroid cancer. In: Biersack H, Grunwald F, editors. Thyroid cancer. 2nd ed. Berlin: Springer; 2005.

    Google Scholar 

  23. Weinreich R, Knust EJ. Quality assurance of iodine-124 produced via the nuclear reaction 124Te(d, 2n)124I. J Radioanal Nucl Chem 1996;213:253–61.

    Article  CAS  Google Scholar 

  24. Knust EJ, Dutschka K, Weinreich R. Preparation of 124I solutions after thermodistillation of irradiated 124TeO2 targets. Appl Radiat Isot 2000;52:181–4.

    Article  CAS  PubMed  Google Scholar 

  25. Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med 2008;49:1017–23.

    Article  PubMed  Google Scholar 

  26. Snyder W, Ford MR, Warner GG, Watson SB. S, absorbed dose per unit cumulated activity for selected radionuclides and organs. New York: Society of Nuclear Medicine; 1975.

    Google Scholar 

  27. Furhang EE, Larson SM, Buranapong P, Humm JL. Thyroid cancer dosimetry using clearance fitting. J Nucl Med 1999;40:131–6.

    CAS  PubMed  Google Scholar 

  28. Loevinger R, Budinger TF, Watson EE. MIRD primer for absorbed dose calculations. New York: Society of Nuclear Medicine; 1991.

    Google Scholar 

  29. Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48:108–14.

    CAS  PubMed  Google Scholar 

  30. Görges R, Eising EG, Fotescu D, Renzing-Köhler K, Frilling A, Schmid KW, et al. Diagnostic value of high-resolution B-mode and power-mode sonography in the follow-up of thyroid cancer. Eur J Ultrasound 2003;16:191–206.

    Article  PubMed  Google Scholar 

  31. Freudenberg LS, Antoch G, Jentzen W, Pink R, Knust J, Görges R, et al. Value of (124)I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 2004;14: 2092–8.

    Article  CAS  PubMed  Google Scholar 

  32. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91:2892–9.

    Article  CAS  PubMed  Google Scholar 

  33. Rosário PW, Salles DS, Purisch S. Area under the curve of TSH after levothyroxine withdrawal versus administration of recombinant human TSH (rhTSH): possible implications for tumor growth. Arq Bras Endocrinol Metabol 2009;53:767–70.

    PubMed  Google Scholar 

  34. Freudenberg LS, Frömke C, Petrich T, Marlowe RJ, Koska WW, Brandau W, et al. Thyroid remnant dose: 124I-PET/CT dosimetric comparison of rhTSH versus thyroid hormone withholding before radioiodine remnant ablation in differentiated thyroid cancer. Exp Clin Endocrinol Diabetes 2010;118:393–9.

    Article  CAS  PubMed  Google Scholar 

  35. Robbins RJ, Larson SM, Sinha N, Shaha A, Divgi C, Pentlow KS, et al. A retrospective review of the effectiveness of recombinant human TSH as a preparation for radioiodine thyroid remnant ablation. J Nucl Med 2002;43:1482–8.

    CAS  PubMed  Google Scholar 

  36. Barbaro D, Boni G, Meucci G, Simi U, Lapi P, Orsini P, et al. Recombinant human thyroid-stimulating hormone is effective for radioiodine ablation of post-surgical thyroid remnants. Nucl Med Commun 2006;27:627–32.

    Article  CAS  PubMed  Google Scholar 

  37. Rosário PW, Borges MA, Purisch S. Preparation with recombinant human thyroid-stimulating hormone for thyroid remnant ablation with 131I is associated with lowered radiotoxicity. J Nucl Med 2008;49:1776–82.

    Article  PubMed  Google Scholar 

  38. Tuttle RM, Brokhin M, Omry G, Martorella AJ, Larson SM, Grewal RK, et al. Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl Med 2008;49:764–70.

    Article  PubMed  Google Scholar 

  39. Chianelli M, Todino V, Graziano FM, Panunzi C, Pace D, Guglielmi R, et al. Low-activity (2.0 GBq; 54 mCi) radioiodine post-surgical remnant ablation in thyroid cancer: comparison between hormone withdrawal and use of rhTSH in low-risk patients. Eur J Endocrinol 2009;160:431–6.

    Article  CAS  PubMed  Google Scholar 

  40. Löffler M, Weckesser M, Franzius C, Kies P, Schober O. Iodine excretion during stimulation with rhTSH in differentiated thyroid carcinoma. Nuklearmedizin 2003;42:240–3.

    PubMed  Google Scholar 

  41. Eschmann SM, Reischl G, Bilger K, Kupferschläger J, Thelen MH, Dohmen BM, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 2002;29:760–7.

    Article  CAS  PubMed  Google Scholar 

  42. Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004;45:1366–72.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

LSF and TP have received speakers’ fees and RJM fees for editorial/logistical assistance on prior rhTSH-related papers from Genzyme Corporation, the rhTSH manufacturer. The University of Essen and MHH Departments of Nuclear Medicine received grants from Genzyme supporting 124I PET/CT data analysis in general, and the prospective in-patient comparison reported in this paper, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Stefan Freudenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freudenberg, L.S., Jentzen, W., Petrich, T. et al. Lesion dose in differentiated thyroid carcinoma metastases after rhTSH or thyroid hormone withdrawal: 124I PET/CT dosimetric comparisons. Eur J Nucl Med Mol Imaging 37, 2267–2276 (2010). https://doi.org/10.1007/s00259-010-1565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1565-3

Keywords

Navigation