Skip to main content
Log in

131I/123I-Metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging

  • Guidelines
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The aim of this document is to provide general information about mIBG scintigraphy in cancer patients. The guidelines describe the mIBG scintigraphy protocol currently used in clinical routine, but do not include all existing procedures for neuroendocrine tumours. The guidelines should therefore not be taken as exclusive of other nuclear medicine modalities that can be used to obtain comparable results. It is important to remember that the resources and facilities available for patient care may vary from one country to another and from one medical institution to another. The present guidelines have been prepared for nuclear medicine physicians and intend to offer assistance in optimizing the diagnostic information that can currently be obtained from mIBG scintigraphy. The corresponding guidelines of the Society of Nuclear Medicine (SNM) and the Dosimetry, Therapy and Paediatric Committee of the EANM have been taken into consideration, and partially integrated into this text. The same has been done with the most relevant literature on this topic, and the final result has been discussed within a group of distinguished experts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakajo M, Shapiro B, Copp J, et al. The normal and abnormal distribution of the adrenomedullary imaging agent m-I123-iodobenzylguanidine (I-123 MIBG) in man: evaluation by scintigraphy. J Nucl Med 1983;24:672–82.

    CAS  PubMed  Google Scholar 

  2. Rubello D, Bui C, Casara D. Functional scintigraphy of the adrenal gland. Eur J Endocrinol 2002;147:13–28.

    Article  CAS  PubMed  Google Scholar 

  3. Leung A, Shapiro B, Hattner R, et al. The specificity of radioiodinated MIBG for neural crest tumors in childhood. J Nucl Med 1997;38:1352–7.

    CAS  PubMed  Google Scholar 

  4. Sisson JC, Shulkin BL. Nuclear medicine imaging of pheochromocytoma and neuroblastoma. Q J Nucl Med 1999;43:217–23.

    CAS  PubMed  Google Scholar 

  5. Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG: clinical implications of the use of 123I-MIBG. Med Pediatr Oncol 1987;15:170–7.

    Article  CAS  PubMed  Google Scholar 

  6. Bombardieri E, Maccauro M, De Deckere E, et al. Nuclear medicine imaging of neuroendocrine tumours. Ann Oncol 2001;12:S51–61.

    Article  PubMed  Google Scholar 

  7. Troncone L, Rufini V. Radiolabeled metaiodobenzylguanidine in the diagnosis of neural crest tumors. In: Murray IPC, Ell PJ, editors. Nuclear medicine in clinical diagnosis and treatment. Edinburgh: Churchill Livingstone; 1998. p. 843–57.

    Google Scholar 

  8. Staalman CR, Hoefnagel CA. Imaging of neuroblastomas and metastasis. In: Brodeur GM, Sawada T, Tsuchida Y, Voute PA, editors. neuroblastoma. Amsterdam: Elsevier; 2000. p. 303–29.

    Google Scholar 

  9. International Commission on Radiological Protection. Publication 80: Radiation dose to patients from radiopharmaceuticals. Annals of the ICRP, vol. 28. Oxford: Pergamon Press; 1998. p. 3.

    Google Scholar 

  10. Stabin MG, Gelfand MJ. Dosimetry of pediatric nuclear medicine procedures. Q J Nucl Med 1998;42:93–112.

    CAS  PubMed  Google Scholar 

  11. International Commission on Radiological Protection. Publication 53: Radiation dose to patients from radiopharmaceuticals. Annals of the ICRP, vol. 18. Oxford: Pergamon Press; 1987. p. 1–4.

    Google Scholar 

  12. Boubaker A, Bischof Delaloye A. Nuclear medicine procedures and neuroblastoma in childhood. Their value in the diagnosis, staging and assessment of response to therapy. Q J Nucl Med 2003;47:31–40.

    CAS  PubMed  Google Scholar 

  13. Perel Y, Conway J, Kletzel M, et al. Clinical impact and prognostic value of metaiodobenzylguanidine imaging in children with metastatic neuroblastoma. J Pediatr Hematol Oncol 1999;21:13–8.

    Article  CAS  PubMed  Google Scholar 

  14. Wafelman AR, Hoefnagel CA, Maes RA, et al. Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interaction, cytotoxicity and dosimetry. Eur J Nucl Med 1994;21:545–59.

    Article  CAS  PubMed  Google Scholar 

  15. Olivier P, Colarinha P, Fettich J, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging 2003;30:B45–50.

    Article  PubMed  Google Scholar 

  16. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F, EANM Dosimetry and Paediatrics Committees. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 2007;34:796–8.

    Article  CAS  PubMed  Google Scholar 

  17. Solanki KK, Bomanji J, Moyes J, et al. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 1992;13:513–21.

    Article  CAS  PubMed  Google Scholar 

  18. Khafagi FA, Shapiro B, Fig LM, et al. Labetalol reduces iodine-131-MIBG uptake by pheochromocytoma and normal tissues. J Nucl Med 1989;30:481–9.

    CAS  PubMed  Google Scholar 

  19. Giammarile F, Boneu A, Edeline V, et al. Guide de réalisation de la scintigraphie à la meta-iodobenzylguanidine (MIBG) en oncologie pédiatrique. Med Nucl 2000;24:35–41.

    Google Scholar 

  20. Sokole EB, Plachcinska A, Britten A. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging 2010;37:662–71.

    Article  Google Scholar 

  21. Meyer-Rochow GY, Schembri GP, Benn DE, Sywak MS, Delbridge LW, Robinson BG, et al. The utility of metaiodobenzylguanidine single photon emission computed tomography/computed tomography (mIBG SPECT/CT) for the diagnosis of pheochromocytoma. Ann Surg Oncol 2010;17:392–400.

    Article  PubMed  Google Scholar 

  22. Rufini V, Fisher GA, Shulkin BL, et al. Iodine-123-MIBG imaging of neuroblastoma: utility of SPECT and delayed imaging. J Nucl Med 1996;37:1464–8.

    CAS  PubMed  Google Scholar 

  23. Rufini V, Giordano A, Di Giuda D, et al. 123MIBG scintigraphy in neuroblastoma: a comparison between planar and SPECT imaging. Q J Nucl Med 1995;4:25–8.

    Google Scholar 

  24. Lynn MD, Shapiro B, Sisson JC, et al. Portrayal of pheochromocytoma and normal human adrenal medulla by m-[123I]iodobenzylguanidine: concise communication. J Nucl Med 1984;25(4):436–40.

    CAS  PubMed  Google Scholar 

  25. Furuta N, Kiyota H, Yoshigoe F, Hasegawa N, Ohishi Y. Diagnosis of pheochromocytoma using [123I]-compared with [131I]-metaiodobenzylguanidine scintigraphy. Int J Urol 1999;6(3):119–24.

    Article  CAS  PubMed  Google Scholar 

  26. Okuyama C, Sakane N, Yoshida T, Shima K, Kurosawa H, Kumamoto K, et al. (123)I- or (125)I-metaiodobenzylguanidine visualization of brown adipose tissue. J Nucl Med 2002;43(9):1234–40.

    CAS  PubMed  Google Scholar 

  27. Peggi L, Liberti E, Pansini G, et al. Pitfalls in scintigraphic detection of neuroendocrine tumors. Eur J Nucl Med 1992;19:214–8.

    Google Scholar 

  28. Gordon I, Peters AM, Gutman A, et al. Skeletal assessment in neuroblastoma – the pitfalls of iodine-123-MIBG scans. J Nucl Med 1990;31:129–34.

    CAS  PubMed  Google Scholar 

  29. Ady N, Zucker JM, Asselain B, Edeline V, Bonnin F, Michon J, et al. A new 123I-MIBG whole body scan scoring method – application to the prediction of the response of metastases to induction chemotherapy in stage IV neuroblastoma. Eur J Cancer 1995;31A(2):256–61.

    Article  CAS  PubMed  Google Scholar 

  30. Suc A, Lumbroso J, Rubie H, Hattchouel JM, Boneu A, Rodary C, et al. Metastatic neuroblastoma in children older than one year: prognostic significance of the initial metaiodobenzylguanidine scan and proposal for a scoring system. Cancer 1996;77(4):805–11.

    Article  CAS  PubMed  Google Scholar 

  31. Katzenstein HM, Cohn SL, Shore RM, Bardo DM, Haut PR, Olszewski M, et al. Scintigraphic response by 123I-metaiodobenzylguanidine scan correlates with event-free survival in high-risk neuroblastoma. J Clin Oncol 2004;22(19):3909–15.

    Article  PubMed  Google Scholar 

  32. Messina JA, Cheng SC, Franc BL, Charron M, Shulkin B, To B, et al. Evaluation of semi-quantitative scoring system for metaiodobenzylguanidine (mIBG) scans in patients with relapsed neuroblastoma. Pediatr Blood Cancer 2006;47(7):865–74.

    Article  PubMed  Google Scholar 

  33. Taal BG, Hoefnagel CA, Valdes Olmos, et al. Combined diagnostic imaging with 131I-MIBG and 111In-pentetreotide in carcinoid tumours. Eur J Cancer 1996;32:1924–32.

    Article  Google Scholar 

  34. Zuetenhorst JM, Hoefnagel CA, Boot H, et al. Evaluation of (111)In-pentetreotide, (131)I-MIBG and bone scintigraphy in the detection and clinical management of bone metastases in carcinoid disease. Nucl Med Commun 2002;23:735–41.

    Article  CAS  PubMed  Google Scholar 

  35. Adams S, Baum R, Rink T, et al. Limited value of fluorine-18fluoodeoxyglucose PET for the imaging of neuroendocrine tumours. Eur J Nucl Med 1998;25:79–83.

    Article  CAS  PubMed  Google Scholar 

  36. Taggart DR, Han MM, Quach A, Groshen S, Ye W, Villablanca JG, et al. Comparison of iodine-123 metaiodobenzylguanidine (mIBG) scan and [18F]FDG positron emission tomography to evaluate response after iodine-131 mIBG therapy for relapsed neuroblastoma. J Clin Oncol 2009;27:5343–49.

    Article  CAS  PubMed  Google Scholar 

  37. Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 2001;19:3397–405.

    CAS  PubMed  Google Scholar 

  38. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S. 123I-mIBG versus 18F-FDG in neuroblastoma: which is better, or which can be eliminated? J Nucl Med 2010;51:331.

    Article  Google Scholar 

  39. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123I-mIBG scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med 2009;50:1237–43.

    Article  PubMed  Google Scholar 

  40. Timmers HJLM, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, et al. Comparison of 18F-fluoro-l-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-mIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2009;94:4757–67.

    Article  CAS  PubMed  Google Scholar 

  41. Ott RJ, Tait D, Flower MA, Babich JW, Lambrecht RM. Treatment planning for 131I-mIBG radiotherapy of neural crest tumours using 124I-mIBG positron emission tomography. Br J Radiol 1992;65:787–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Chiti.

Additional information

The European Association has written and approved guidelines to promote the use of nuclear medicine procedures with high quality. These general recommendations cannot be applied to all patients in all practice settings. The guidelines should not be deemed inclusive of all proper procedures and exclusive of other procedures reasonably directed to obtaining the same results. The spectrum of patients seen in a specialized practice setting may be different than the spectrum usually seen in a more general setting. The appropriateness of a procedure will depend in part on the prevalence of disease in the patient population. In addition, resources available for patient care may vary greatly from one European country or one medical facility to another. For these reasons, guidelines cannot be rigidly applied. These guidelines summarize the views of the Oncology Committee of the EANM and reflect recommendations for which the EANM cannot be held responsible. The recommendations should be taken in the context of good practice of nuclear medicine and do not substitute for national and international legal or regulatory provisions. The guidelines have been reviewed by the EANM Dosimetry Committee, Paediatrics Committee, Physics Committee and Radiopharmacy Committee. The guidelines have been brought to the attention of the National Societies of Nuclear Medicine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bombardieri, E., Giammarile, F., Aktolun, C. et al. 131I/123I-Metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 37, 2436–2446 (2010). https://doi.org/10.1007/s00259-010-1545-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1545-7

Keywords

Navigation