Skip to main content

Advertisement

Log in

Abstract

Ultrasound can be used to image perfusion in two ways: the traditional one using Doppler and the more recent using microbubble contrast agents. Doppler is simple to use and inexpensive but is limited to larger vessels with faster flow rates. It cannot interrogate the microvasculature because bulk tissue movement is faster than capillary flow. It has been used for liver and tumour flow. Contrast studies are much richer and can assess both the macro- and microcirculation. One approach analyses the time-intensity curves in a region of interest, e.g. a tumour, myocardium, brain, following bolus i.v. injection. Another approach measures the time taken for the microbubbles to cross a vascular bed of interest. These arrival times can be useful for the liver in both diffuse and focal diseases and for the kidney. Features derived from time-intensity curves following bolus i.v. injections of microbubbles form sensitive early indicators of the vascular response of tumours to antivascular drugs. This approach, known as dynamic contrast-enhanced ultrasound (DCE-US), has been accepted as a valid technique for monitoring tumour response by several authorities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Youssefzadeh S, Eibenberger K, Helbich T, Jakesz R, Wolf G. Use of resistance index for the diagnosis of breast tumours. Clin Radiol 1996;51(6):418–20.

    Article  CAS  PubMed  Google Scholar 

  2. Leen E, Angerson WG, Cooke TG, McArdle CS. Prognostic power of Doppler perfusion index in colorectal cancer. Correlation with survival. Ann Surg 1996;223(2):199–203.

    Article  CAS  PubMed  Google Scholar 

  3. Kedar RP, Cosgrove DO, Bamber JC, Bell DS. Automated quantification of color Doppler signals: a preliminary study in breast tumors. Radiology 1995;197(1):39–43.

    CAS  PubMed  Google Scholar 

  4. Chen CN, Cheng YM, Liang JT, Lee PH, Hsieh FJ, Yuan RH, et al. Color Doppler vascularity index can predict distant metastasis and survival in colon cancer patients. Cancer Res 2000;60(11):2892–7.

    CAS  PubMed  Google Scholar 

  5. Pairleitner H, Steiner H, Hasenoehrl G, Staudach A. Three-dimensional power Doppler sonography: imaging and quantifying blood flow and vascularization. Ultrasound Obstet Gynecol 1999;14(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  6. Nardozza LM, Araújo Júnior E, Simioni C, Torloni MR, Moron AF. Evolution of 3-D power Doppler indices of fetal brain in normal pregnancy. Ultrasound Med Biol 2009;35(4):545–9.

    Article  PubMed  Google Scholar 

  7. Cosgrove D, Harvey C. Clinical uses of microbubbles in diagnosis and treatment. Med Biol Eng Comput 2009;47(8):813–26.

    Article  PubMed  Google Scholar 

  8. Greis C. Technology overview: SonoVue (Bracco, Milan). Eur Radiol 2004;14(Suppl 8):P11–5.

    PubMed  Google Scholar 

  9. Phillips P, Gardner E. Contrast-agent detection and quantification. Eur Radiol 2004;14(Suppl 8):P4–10.

    PubMed  Google Scholar 

  10. Krix M. Quantification of enhancement in contrast ultrasound: a tool for monitoring of therapies in liver metastases. Eur Radiol 2005;15(Suppl 5):E104–8.

    PubMed  Google Scholar 

  11. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954;6:731–44.

    Google Scholar 

  12. Claassen L, Seidel G, Algermissen C. Quantification of flow rates using harmonic grey-scale imaging and an ultrasound contrast agent: an in vitro and in vivo study. Ultrasound Med Biol 2001;27(1):83–8.

    Article  CAS  PubMed  Google Scholar 

  13. Blomley MJ, Albrecht T, Cosgrove DO, Bamber JC. Can relative contrast agent concentration be measured in vivo with color Doppler US? Radiology 1997;204(1):279–81.

    CAS  PubMed  Google Scholar 

  14. Tang MX, Eckersley RJ. Nonlinear propagation of ultrasound through microbubble contrast agents and implications for imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2006;53(12):2406–15.

    Article  PubMed  Google Scholar 

  15. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998;97(5):473–83.

    CAS  PubMed  Google Scholar 

  16. Lucidarme O, Kono Y, Corbeil J, Choi SH, Mattrey RF. Validation of ultrasound contrast destruction imaging for flow quantification. Ultrasound Med Biol 2003;29(12):1697–704.

    Article  PubMed  Google Scholar 

  17. Krix M, Plathow C, Kiessling F, Herth F, Karcher A, Essig M, et al. Quantification of perfusion of liver tissue and metastases using a multivessel model for replenishment kinetics of ultrasound contrast agents. Ultrasound Med Biol 2004;30(10):1355–63.

    Article  PubMed  Google Scholar 

  18. Arditi M, Frinking PJ, Zhou X, Rognin NG. A new formalism for the quantification of tissue perfusion by the destruction-replenishment method in contrast ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2006;53(6):1118–29.

    Article  PubMed  Google Scholar 

  19. Tomtec, SonoLiver; 2008. Available via http://www.tomtec.de/uploads/tx_jurelatedfiles/M.71.0099-02_SonoLiver_Technical_Flyer_02.pdf Accessed 2010.

  20. Leong-Poi H. Molecular imaging using contrast-enhanced ultrasound: evaluation of angiogenesis and cell therapy. Cardiovasc Res 2009;84(2):190–200.

    Article  CAS  PubMed  Google Scholar 

  21. Turkbey B, Kobayashi H, Ogawa M, Bernardo M, Choyke PL. Imaging of tumor angiogenesis: functional or targeted? AJR Am J Roentgenol 2009;193(2):304–13.

    Article  PubMed  Google Scholar 

  22. Vaupel P. Blood flow, oxygenation, tissue pH distribution and bioenergetic state of tumors. Berlin: Schering AG; 1994.

    Google Scholar 

  23. Jain KA. Gestational trophoblastic disease: pictorial review. Ultrasound Q 2005;21(4):245–53.

    Article  PubMed  Google Scholar 

  24. Zhou Q, Lei XY, Xie Q, Cardoza JD. Sonographic and Doppler imaging in the diagnosis and treatment of gestational trophoblastic disease: a 12-year experience. J Ultrasound Med 2005;24(1):15–24.

    PubMed  Google Scholar 

  25. Alcázar JL, Jurado M. Transvaginal color Doppler for predicting pathological response to preoperative chemoradiation in locally advanced cervical carcinoma: a preliminary study. Ultrasound Med Biol 1999;25(7):1041–5.

    Article  PubMed  Google Scholar 

  26. Chen CN, Lin JJ, Lee H, Cheng YM, Chang KJ, Hsieh FJ, et al. Association between color doppler vascularity index, angiogenesis-related molecules, and clinical outcomes in gastric cancer. J Surg Oncol 2009;99(7):402–8.

    Article  PubMed  Google Scholar 

  27. Escudier B, Lassau N, Couanet D, Angevin E, Mesrati F, Leborgne S, et al. Phase II trial of thalidomide in renal-cell carcinoma. Ann Oncol 2002;13(7):1029–35.

    Article  CAS  PubMed  Google Scholar 

  28. Li YJ, Wen G, Yang L. Inspection on angiogenesis in malignant transformation of breast tumor by ultrasound contrast and quantitative analysis. Zhonghua Yi Xue Za Zhi 2009;89(9):587–91. Chinese.

    CAS  PubMed  Google Scholar 

  29. Jung EM, Jungius KP, Rupp N, Gallegos M, Ritter G, Lenhart M, et al. Contrast enhanced harmonic ultrasound for differentiating breast tumors - first results. Clin Hemorheol Microcirc 2005;33(2):109–20.

    PubMed  Google Scholar 

  30. Rizzatto G, Martegani A, Chersevani R, Macorig D, Vrtovec M, Aiani L, et al. Importance of staging of breast cancer and role of contrast ultrasound. Eur Radiol 2001;11(Suppl 3):E47–51.

    Article  PubMed  Google Scholar 

  31. Barnard S, Leen E, Cooke T, Angerson W. A contrast-enhanced ultrasound study of benign and malignant breast tissue. S Afr Med J 2008;98(5):386–91.

    PubMed  Google Scholar 

  32. Eckersley R, Butler-Barnes J, Blomley M, DeSouza N, Cosgrove D. Quantitative microbubble enhanced transrectal ultrasound (TRUS) as a tool for monitoring anti-androgen therapy in prostate carcinoma. Radiology 1998;209:310.

    Google Scholar 

  33. Blomley M, Cosgrove D, Jayaram V, Eckersley R, Albrecht T, DeSouza NM. Quantitation of enhanced transrectal ultrasound of the prostate: work in progress using the echo-enhancing agent BR1. Radiology 1997;205:280–1.

    Google Scholar 

  34. Frauscher F, Klauser A, Berger AP, Halpern EJ, Feuchtner G, Koppelstaetter F, et al. The value of ultrasound (US) in the diagnosis of prostate cancer. Radiologe 2003;43(6):455–63. German.

    Article  CAS  PubMed  Google Scholar 

  35. Wink M, Frauscher F, Cosgrove D, Chapelon JY, Palwein L, Mitterberger M, et al. Contrast-enhanced ultrasound and prostate cancer; a multicentre European research coordination project. Eur Urol 2008;54:982–92.

    Article  PubMed  Google Scholar 

  36. Lassau N, Lamuraglia M, Chami L, Leclère J, Bonvalot S, Terrier P, et al. Gastrointestinal stromal tumors treated with imatinib: monitoring response with contrast-enhanced sonography. AJR Am J Roentgenol 2006;187(5):1267–73.

    Article  PubMed  Google Scholar 

  37. Le Cesne A, Landi B, Bonvalot S, Monges G, Ray-Coquard I, Duffaud F, et al. Recommandations pour la prise en charge des tumeurs stromales gastro-intestinales. Hépato-Gastro 2005;12(5):377–89.

    Google Scholar 

  38. Lamuraglia M, Le Cesne A, Chami L, Bonvalot S, Terrier P, Tursz T, et al. Dynamic contrast-enhanced Doppler ultrasound (DCE-US) is a useful radiological assessment to early predict the outcome of patients with gastrointestinal stromal tumors (GIST) treated with imatinib (IM). J Clin Oncol 2006;24(18S):9539.

    Google Scholar 

  39. Le Cesne A, Landi B, Bonvalot S, Monges G, Ray-Coquard I, Duffaud F, et al. Recommendations for the management of gastro-intestinal stromal tumors. Ann Pathol 2006;26(3):231–4. French.

    Article  PubMed  Google Scholar 

  40. Lamuraglia M, Escudier B, Chami L, Schwartz B, Leclère J, Roche A, et al. To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler ultrasound. Eur J Cancer 2006;42(15):2472–9.

    Article  CAS  PubMed  Google Scholar 

  41. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92(3):205–16.

    Article  CAS  PubMed  Google Scholar 

  42. Escudier B, Lassau N, Angevin E, Soria JC, Chami L, Lamuraglia M, et al. Phase I trial of sorafenib in combination with IFN alpha-2a in patients with unresectable and/or metastatic renal cell carcinoma or malignant melanoma. Clin Cancer Res 2007;13(6):1801–9.

    Article  CAS  PubMed  Google Scholar 

  43. Lassau N, Lamuraglia M, Vanel D, Le Cesne A, Chami L, Jaziri S, et al. Doppler US with perfusion software and contrast medium injection in the early evaluation of isolated limb perfusion of limb sarcomas: prospective study of 49 cases. Ann Oncol 2005;16:1054–60.

    Article  CAS  PubMed  Google Scholar 

  44. Blay J-Y, Bonvalot S, Casali P, Choi H, Debiec-Richter M, Dei Tos A, et al. Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20–21 March 2004, under the auspices of ESMO. Ann Oncol 2005;16:566–78.

    Article  PubMed  Google Scholar 

  45. De Giorgi U, Aliberti C, Benea G, Conti M, Marangolo M. Effect of angiosonography to monitor response during imatinib treatment in patients with metastatic gastrointestinal stromal tumors. Clin Cancer Res 2005;11(17):6171–6.

    Article  PubMed  Google Scholar 

  46. Soria J, Lazar V, Lassau N, Pena C, Massard C, Robert C, et al. Sorafenib (S) and dacarbazine (D) combination in patients (pts) with advanced malignant solid tumors: phase I study with tumor biopsy genomic analysis and dynamic contrast enhanced ultrasonography (DCE-US). J Clin Oncol 2007;25(18S):3556.

    Google Scholar 

  47. Lassau N, Koscielny S, Albiges L, Chami L, Benatsou B, Chebil M, et al. Metastatic renal cell carcinoma treated with sunitinib: early evaluation of treatment response using dynamic contrast-enhanced ultrasonography. Clin Cancer Res 2010;16(4):1216–25.

    Article  CAS  PubMed  Google Scholar 

  48. Lassau N, Koscielny S, Chebil M, Chami L, Bendjilali R, Roche A, et al. editors. Functional imaging using DCE-US: which parameters for the early evaluation of antiangiogenetic therapies? 45th annual meeting of American Society of Clinical Oncology; 2009;Chicago, IL, USA.

  49. Lassau N, Lacroix J, Aziza R, Vilgrain V, Taieb S, Koscielny S. French multicentric prospective evaluation of dynamic contrast-enhanced ultrasound (DCE-US) for the evaluation of antiangiogenic treatments. 95th Radiological Society of North America; Chicago, USA: RSNA; 2009. p. 408.

  50. Blomley M, Albrecht T, Eckersley R, Butler-Barnes J, Jayaram V, Cosgrove D. Renal arteriovenous transit time measured noninvasively using bolus injections of microbubble contrast. Radiology 1998;209:461.

    Google Scholar 

  51. Schlotmann A, Clorius JH, Clorius SN. Diuretic renography in hydronephrosis: renal tissue tracer transit predicts functional course and thereby need for surgery. Eur J Nucl Med Mol Imaging 2009;36(10):1665–73.

    Article  PubMed  Google Scholar 

  52. Lencioni R, Pinto S, Cioni D, Bartolozzi C. Contrast-enhanced Doppler ultrasound of renal artery stenosis: prologue to a promising future. Echocardiography 1999;16(7, Pt 2):767–73.

    Article  PubMed  Google Scholar 

  53. Puls I, Becker G, Mäurer M, Müllges W. Cerebral arteriovenous transit time (CTT): a sonographic assessment of cerebral microcirculation using ultrasound contrast agents. Ultrasound Med Biol 1999;25(4):503–7.

    Article  CAS  PubMed  Google Scholar 

  54. Robinson PJ, Parkin A. Detection of occult hepatic metastases using the hepatic perfusion index. Nucl Med Commun 1991;12:153–8.

    Article  CAS  PubMed  Google Scholar 

  55. Blomley MJ, Albrecht T, Cosgrove DO, Jayaram V, Eckersley RJ, Patel N, et al. Liver vascular transit time analyzed with dynamic hepatic venography with bolus injections of an US contrast agent: early experience in seven patients with metastases. Radiology 1998;209(3):862–6. Erratum in: Radiology 1999;210(3):882.

    CAS  PubMed  Google Scholar 

  56. Blomley MJ, Lim AK, Harvey CJ, Patel N, Eckersley RJ, Basilico R, et al. Liver microbubble transit time compared with histology and Child-Pugh score in diffuse liver disease: a cross sectional study. Gut 2003;52(8):1188–93.

    Article  CAS  PubMed  Google Scholar 

  57. Lim AK, Patel N, Eckersley RJ, Kuo YT, Goldin RD, Thomas HC, et al. Can Doppler sonography grade the severity of hepatitis C-related liver disease? AJR Am J Roentgenol 2005;184(6):1848–53.

    PubMed  Google Scholar 

  58. Hohmann J, Müller C, Oldenburg A, Skrok J, Frericks BB, Wolf KJ, et al. Hepatic transit time analysis using contrast-enhanced ultrasound with BR1: a prospective study comparing patients with liver metastases from colorectal cancer with healthy volunteers. Ultrasound Med Biol 2009;35(9):1427–35.

    Article  PubMed  Google Scholar 

  59. Zhou JH, Li AH, Cao LH, Jiang HH, Liu LZ, Pei XQ, et al. Haemodynamic parameters of the hepatic artery and vein can detect liver metastases: assessment using contrast-enhanced ultrasound. Br J Radiol 2008;81(962):113–9.

    Article  CAS  PubMed  Google Scholar 

  60. Ridolfi F, Abbattista T, Marini F, Vedovelli A, Quagliarini P, Busilacchi P, et al. Contrast-enhanced ultrasound to evaluate the severity of chronic hepatitis C. Dig Liver Dis 2007;39(10):929–35.

    Article  CAS  PubMed  Google Scholar 

  61. Di Sabatino A, Armellini E, Corazza GR. Doppler sonography in the diagnosis of inflammatory bowel disease. Dig Dis 2004;22(1):63–6.

    Article  PubMed  Google Scholar 

  62. Dietrich CF, Jedrzejczyk M, Ignee A. Sonographic assessment of splanchnic arteries and the bowel wall. Eur J Radiol 2007;64(2):202–12.

    Article  CAS  PubMed  Google Scholar 

  63. Migaleddu V, Scanu AM, Quaia E, Rocca PC, Dore MP, Scanu D, et al. Contrast-enhanced ultrasonographic evaluation of inflammatory activity in Crohn’s disease. Gastroenterology 2009;137(1):43–52.

    Article  PubMed  Google Scholar 

  64. Taylor PC, Steuer A, Gruber J, McClinton C, Cosgrove DO, Blomley MJ, et al. Ultrasonographic and radiographic results from a two-year controlled trial of immediate or one-year-delayed addition of infliximab to ongoing methotrexate therapy in patients with erosive early rheumatoid arthritis. Arthritis Rheum 2006;54(1):47–53.

    Article  CAS  PubMed  Google Scholar 

  65. De Zordo T, Mlekusch SP, Feuchtner GM, Mur E, Schirmer M, Klauser AS. Value of contrast-enhanced ultrasound in rheumatoid arthritis. Eur J Radiol 2007;64(2):222–30.

    Article  PubMed  Google Scholar 

  66. Carotti M, Salaffi F, Morbiducci J, Ciapetti A, Bartolucci L, Gasparini S, et al. Colour Doppler ultrasonography evaluation of vascularization in the wrist and finger joints in rheumatoid arthritis patients and healthy subjects. Eur J Radiol 2010 Feb 5.

  67. DeMaria AN, Narula J, Mahmud E, Tsimikas S. Imaging vulnerable plaque by ultrasound. J Am Coll Cardiol 2006;47(8 Suppl):C32–9.

    Article  PubMed  Google Scholar 

  68. Vavuranakis M, Kakadiaris IA, O’Malley SM, Papaioannou TG, Sanidas EA, Naghavi M, et al. A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and differential image analysis. Int J Cardiol 2008;130(1):23–9.

    Article  PubMed  Google Scholar 

  69. Feinstein SB. The powerful microbubble: from bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond. Am J Physiol Heart Circ Physiol 2004;287(2):H450–7.

    Article  CAS  PubMed  Google Scholar 

  70. Huang PT, Huang FG, Zou CP, Sun HY, Tian XQ, Yang Y, et al. Contrast-enhanced sonographic characteristics of neovascularization in carotid atherosclerotic plaques. J Clin Ultrasound 2008;36(6):346–51.

    Article  PubMed  Google Scholar 

  71. Chelliah R, Senior R. An update on contrast echocardiography. Minerva Cardioangiol 2009;57(4):483–93.

    CAS  PubMed  Google Scholar 

  72. Senior R, Monaghan M, Main ML, Zamorano JL, Tiemann K, Agati L, et al. Detection of coronary artery disease with perfusion stress echocardiography using a novel ultrasound imaging agent: two Phase 3 international trials in comparison with radionuclide perfusion imaging. Eur J Echocardiogr 2009;10(1):26–35.

    Article  PubMed  Google Scholar 

  73. Shimoni S, Frangogiannis NG, Aggeli CJ, Shan K, Verani MS, Quinones MA, et al. Identification of hibernating myocardium with quantitative intravenous myocardial contrast echocardiography: comparison with dobutamine echocardiography and thallium-201 scintigraphy. Circulation 2003;107(4):538–44.

    Article  PubMed  Google Scholar 

  74. Jung PH, Rieber J, Störk S, Hoyer C, Erhardt I, Nowotny A, et al. Effect of contrast application on interpretability and diagnostic value of dobutamine stress echocardiography in patients with intermediate coronary lesions: comparison with myocardial fractional flow reserve. Eur Heart J 2008;29(20):2536–43.

    Article  PubMed  Google Scholar 

  75. Main ML, Goldman JH, Grayburn PA. Thinking outside the “box”-the ultrasound contrast controversy. J Am Coll Cardiol 2007;50(25):2434–7.

    Article  PubMed  Google Scholar 

  76. Droste DW. Clinical utility of contrast-enhanced ultrasound in neurosonology. Eur Neurol 2008;59(Suppl 1):2–8.

    Article  PubMed  Google Scholar 

  77. Bauer A, Becker G, Henz P, Jachimczak P, Schwarz KQ, Haase A, et al. Transcranial duplex ultrasound: experience with contrast enhancing agents. Int Angiol 1997;16(4):216–21.

    CAS  PubMed  Google Scholar 

  78. Seidel G, Albers T, Meyer K, Wiesmann M. Perfusion harmonic imaging in acute middle cerebral artery infarction. Ultrasound Med Biol 2003;29(9):1245–51.

    Article  PubMed  Google Scholar 

  79. Meairs S, Hennerici MG. Future developments in neurovascular ultrasound. Front Neurol Neurosci 2006;21:261–8.

    Article  PubMed  Google Scholar 

  80. Valentino M, Serra C, Zironi G, De Luca C, Pavlica P, Barozzi L. Blunt abdominal trauma: emergency contrast-enhanced sonography for detection of solid organ injuries. AJR Am J Roentgenol 2006;186(5):1361–7.

    Article  PubMed  Google Scholar 

  81. Catalano O, Aiani L, Barozzi L, Bokor D, De Marchi A, Faletti C, et al. CEUS in abdominal trauma: multi-center study. Abdom Imaging 2009;34(2):225–34.

    Article  PubMed  Google Scholar 

  82. Clevert D-A, Weckbach S, Minaifar N, Clevert D-A, Stickel M, Reiser M. Contrast-enhanced ultrasound versus MS-CT in blunt abdominal trauma. Clin Hemorheol Microcirc 2008;39(1–4):155–69.

    PubMed  Google Scholar 

  83. Blaivas M, Lyon M, Brannam L, Schwartz R, Duggal S. Feasibility of FAST examination performance with ultrasound contrast. J Emerg Med 2005;29(3):307–11.

    Article  PubMed  Google Scholar 

  84. Piscaglia F, Gaiani S, Leoni S, Nardo B, Vivarelli M, Golfieri R. Improved detectability of the hepatic arterial tree in liver transplantation by perfusional angiosonography. Dig Liver Dis 2004;36(12):854–6.

    Article  CAS  PubMed  Google Scholar 

  85. Cosgrove DO, Chan KE. Renal transplants: what ultrasound can and cannot do. Ultrasound Q 2008;24(2):77–87. quiz 141–2.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cosgrove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosgrove, D., Lassau, N. Imaging of perfusion using ultrasound. Eur J Nucl Med Mol Imaging 37 (Suppl 1), 65–85 (2010). https://doi.org/10.1007/s00259-010-1537-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1537-7

Keywords

Navigation