Skip to main content

Advertisement

Log in

Abstract

Purpose

We present a review of radionuclide imaging of tumour vascular physiology as it relates to angiogenesis. We focus on clinical trials in human subjects using PET and SPECT to evaluate tumour physiology, in particular blood flow and hypoxia.

Methods

A systematic review of literature based on MEDLINE searches updated in February 2010 was performed.

Results

Twenty-nine studies were identified for review: 14 dealt with 15O-water PET perfusion imaging, while 8 dealt with 18F-fluoromisonidazole PET hypoxia imaging. Five used SPECT methods. The studies varied widely in technical quality and reporting of methods.

Conclusions

A subset of radionuclide methods offers accurate quantitative scientific observations on tumour vascular physiology of relevance to angiogenesis and its treatment. The relationship between cellular processes of angiogenesis and changing physiological function remains poorly defined. The promise of quantitative functional imaging at high specificity and low administered dose sustains interest in radionuclide methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The term VT is the result of a recent consensus and replaces previous usage, notably VD [47]. For consistency we adhere to the current nomenclature.

  2. We advocate use of the term ‘repeatability’, rather than ‘reproducibility’ in reliability analysis of medical imaging. See our discussion in [8], based on ISO 3534 (cited in [50]).

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  2. Jain RK. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park) 2005;19(4 Suppl 3):7–16.

    Google Scholar 

  3. Gimbrone MA, Leapman SB, Cotran RS, Folkman J. Tumor angiogenesis: iris neovascularization at a distance from experimental intraocular tumors. J Natl Cancer Inst 1973;50(1):219–28.

    PubMed  Google Scholar 

  4. Weidner N, Semple J, Welch W, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 1991;324(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  5. Less J, Skalak T, Sevick E, Jain R. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 1991;51(1):265–73.

    CAS  PubMed  Google Scholar 

  6. Hashizume H, Baluk P, Morikawa S, McLean J, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000;156(4):1363–80.

    CAS  PubMed  Google Scholar 

  7. Jain RK. Determinants of tumor blood flow: a review. Cancer Res 1988;48(10):2641–58.

    CAS  PubMed  Google Scholar 

  8. Laking GR, West C, Buckley DL, Matthews J, Price PM. Imaging vascular physiology to monitor cancer treatment. Crit Rev Oncol Hematol 2006;58(2):95–113.

    Article  PubMed  Google Scholar 

  9. Mees G, Dierckx R, Vangestel C, Van de Wiele C. Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 2009;36(10):1674–86.

    Article  CAS  PubMed  Google Scholar 

  10. Ng CS, Kodama Y, Mullani NA, Barron BJ, Wei W, Herbst RS, et al. Tumor blood flow measured by perfusion computed tomography and 15O-labeled water positron emission tomography: a comparison study. J Comput Assist Tomogr 2009;33(3):460–5.

    Article  PubMed  Google Scholar 

  11. Eby PR, Partridge SC, White SW, Doot RK, Dunnwald LK, Schubert EK, et al. Metabolic and vascular features of dynamic contrast-enhanced breast magnetic resonance imaging and 15O-water positron emission tomography blood flow in breast cancer. Acad Radiol 2008;15(10):1246–54.

    Article  PubMed  Google Scholar 

  12. Lüdemann L, Warmuth C, Plotkin M, Förschler A, Gutberlet M, Wust P, et al. Brain tumor perfusion: comparison of dynamic contrast enhanced magnetic resonance imaging using T1, T2, and T2* contrast, pulsed arterial spin labeling, and H2 15O positron emission tomography. Eur J Radiol 2009;70(3):465–74.

    Article  PubMed  Google Scholar 

  13. Hentschel M, Paulus T, Mix M, Moser E, Nitzsche EU, Brink I. Analysis of blood flow and glucose metabolism in mammary carcinomas and normal breast: a H2 15O PET and 18F-FDG PET study. Nucl Med Commun 2007;28(10):789–97.

    Article  CAS  PubMed  Google Scholar 

  14. Miller K, Soule S, Calley C, Emerson R, Hutchins G, Kopecky K, et al. Randomized phase II trial of the anti-angiogenic potential of doxorubicin and docetaxel; primary chemotherapy as Biomarker Discovery Laboratory. Breast Cancer Res Treat 2005;89(2):187–97.

    Article  CAS  PubMed  Google Scholar 

  15. Lara PN, Quinn DI, Margolin K, Meyers FJ, Longmate J, Frankel P, et al. SU5416 plus interferon alpha in advanced renal cell carcinoma: a phase II California Cancer Consortium Study with biological and imaging correlates of angiogenesis inhibition. Clin Cancer Res 2003;9(13):4772–81.

    CAS  PubMed  Google Scholar 

  16. Anderson H, Yap J, Wells P, Miller M, Propper D, Price P, et al. Measurement of renal tumour and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br J Cancer 2003;89(2):262–7.

    Article  CAS  PubMed  Google Scholar 

  17. Logan T, Jadali F, Egorin M, Mintun M, Sashin D, Gooding W, et al. Decreased tumor blood flow as measured by positron emission tomography in cancer patients treated with interleukin-1 and carboplatin on a phase I trial. Cancer Chemother Pharmacol 2002;50(6):433–44.

    Article  CAS  PubMed  Google Scholar 

  18. Herbst R, Mullani N, Davis D, Hess K, McConkey D, Charnsangavej C, et al. Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol 2002;20(18):3804–14.

    Article  CAS  PubMed  Google Scholar 

  19. Hoekstra C, Stroobants S, Hoekstra O, Smit E, Vansteenkiste J, Lammertsma AA. Measurement of perfusion in stage IIIA-N2 non-small cell lung cancer using H2 15O and positron emission tomography. Clin Cancer Res 2002;8(7):2109–15.

    PubMed  Google Scholar 

  20. Yamaguchi A, Taniguchi H, Kunishima S, Koh T, Yamagishi H. Correlation between angiographically assessed vascularity and blood flow in hepatic metastases in patients with colorectal carcinoma. Cancer 2000;89(6):1236–44.

    Article  CAS  PubMed  Google Scholar 

  21. Kim S-W, Park S-S, Ahn S-J, Chung K-W, Moon WK, Im J-G, et al. Identification of angiogenesis in primary breast carcinoma according to the image analysis. Breast Cancer Res Treat 2002;74(2):121–9.

    Article  CAS  PubMed  Google Scholar 

  22. Swanson KR, Chakraborty G, Wang CH, Rockne R, Harpold HLP, Muzi M, et al. Complementary but distinct roles for MRI and 18F-fluoromisonidazole PET in the assessment of human glioblastomas. J Nucl Med 2009;50(1):36–44.

    Article  PubMed  Google Scholar 

  23. Lawrentschuk N, Poon AMT, Foo SS, Putra LGJ, Murone C, Davis ID, et al. Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int 2005;96(4):540–6.

    Article  PubMed  Google Scholar 

  24. Dietz DW, Dehdashti F, Grigsby PW, Malyapa RS, Myerson RJ, Picus J, et al. Tumor hypoxia detected by positron emission tomography with 60Cu-ATSM as a predictor of response and survival in patients undergoing neoadjuvant chemoradiotherapy for rectal carcinoma: a pilot study. Dis Colon Rectum 2008;51(11):1641–8.

    Article  PubMed  Google Scholar 

  25. Rischin D, Peters L, Hicks R, Hughes P, Fisher R, Hart R, et al. Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J Clin Oncol 2001;19(2):535–42.

    CAS  PubMed  Google Scholar 

  26. Eschmann S-M, Paulsen F, Reimold M, Dittmann H, Welz S, Reischl G, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 2005;46(2):253–60.

    PubMed  Google Scholar 

  27. Li L, Yu J, Xing L, Ma K, Zhu H, Guo H, et al. Serial hypoxia imaging with 99mTc-HL91 SPECT to predict radiotherapy response in nonsmall cell lung cancer. Am J Clin Oncol 2006;29(6):628–33.

    Article  PubMed  Google Scholar 

  28. Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, et al. [18F]FMISO and [18F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 2003;30(5):695–704.

    CAS  PubMed  Google Scholar 

  29. Lehtiö K, Oikonen V, Nyman S, Grönroos T, Roivainen A, Eskola O, et al. Quantifying tumour hypoxia with fluorine-18 fluoroerythronitroimidazole ([18F]FETNIM) and PET using the tumour to plasma ratio. Eur J Nucl Med Mol Imaging 2003;30(1):101–8.

    Article  PubMed  Google Scholar 

  30. Hicks RJ, Rischin D, Fisher R, Binns D, Scott AM, Peters LJ. Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 2005;32(12):1384–91.

    Article  PubMed  Google Scholar 

  31. Gagel B, Reinartz P, Demirel C, Kaiser HJ, Zimny M, Piroth M, et al. [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer 2006;6:51.

    Article  PubMed  Google Scholar 

  32. Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 2006;24(13):2098–104.

    Article  PubMed  Google Scholar 

  33. Hoebers FJP, Janssen HLK, Olmos AV, Sprong D, Nunn AD, Balm AJM, et al. Phase 1 study to identify tumour hypoxia in patients with head and neck cancer using technetium-99m BRU 59-21. Eur J Nucl Med Mol Imaging 2002;29(9):1206–11.

    Article  CAS  PubMed  Google Scholar 

  34. Hulshof MC, Rehmann CJ, Booij J, van Royen EA, Bosch DA, González González D. Lack of perfusion enhancement after administration of nicotinamide and carbogen in patients with glioblastoma: a 99mTc-HMPAO SPECT study. Radiother Oncol 1998;48(2):135–42.

    Article  CAS  PubMed  Google Scholar 

  35. Cermik TF, Altiay G, Firat MF, Hatipoglu ON, Berkarda S. Assessment of Tc-99 m sestamibi tumor tissue uptake under the influence of increased arterial oxygen saturation. Nucl Med Biol 2005;32(2):165–70.

    Article  CAS  PubMed  Google Scholar 

  36. de Langen AJ, Lubberink M, Boellaard R, Spreeuwenberg MD, Smit EF, Hoekstra OS, et al. Reproducibility of tumor perfusion measurements using 15O-labeled water and PET. J Nucl Med 2008;49(11):1763–8.

    Article  PubMed  Google Scholar 

  37. Gupta N, Saleem A, Kötz B, Osman S, Aboagye EO, Phillips R, et al. Carbogen and nicotinamide increase blood flow and 5-fluorouracil delivery but not 5-fluorouracil retention in colorectal cancer metastases in patients. Clin Cancer Res 2006;12(10):3115–23.

    Article  CAS  PubMed  Google Scholar 

  38. Lehtiö K, Eskola O, Viljanen T, Oikonen V, Grönroos T, Sillanmäki L, et al. Imaging perfusion and hypoxia with PET to predict radiotherapy response in head-and-neck cancer. Int J Radiat Oncol Biol Phys 2004;59(4):971–82.

    Article  PubMed  Google Scholar 

  39. Anderson HL, Yap JT, Miller MP, Robbins A, Jones T, Price P. Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J Clin Oncol 2003;21(15):2823–30.

    Article  CAS  PubMed  Google Scholar 

  40. Kurdziel K, Figg W, Carrasquillo J, Huebsch S, Whatley M, Sellers D, et al. Using positron emission tomography 2-deoxy-2-[18F]fluoro-D-glucose, 11CO, and 15O- water for monitoring androgen independent prostate cancer. Mol Imaging Biol 2003;5(2):86–93.

    Article  PubMed  Google Scholar 

  41. Wells P, Jones T, Price P. Assessment of inter- and intrapatient variability in C15O2 positron emission tomography measurements of blood flow in patients with intra- abdominal cancers. Clin Cancer Res 2003;9(17):6350–6.

    PubMed  Google Scholar 

  42. Mankoff D, Dunnwald L, Gralow J, Ellis G, Schubert E, Tseng J, et al. Changes in blood flow and metabolism in locally advanced breast cancer treated with neoadjuvant chemotherapy. J Nucl Med 2003;44(11):1806–14.

    PubMed  Google Scholar 

  43. Mankoff D, Dunnwald L, Gralow J, Ellis G, Charlop A, Lawton T, et al. Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med 2002;43(4):500–9.

    PubMed  Google Scholar 

  44. Mullani N, Herbst R, Abbruzzese J, Charnsangavej C, Kim E, Tran H, et al. 9:00–9:15. Antiangiogenic treatment with endostatin results in uncoupling of blood flow and glucose metabolism in human tumors. Clin Positron Imaging 2000;3(4):151.

    Article  PubMed  Google Scholar 

  45. Ponto L, Madsen M, Hichwa R, Mayr N, Yuh W, Magnotta V, et al. Assessment of blood flow in solid tumors using PET. Clin Positron Imaging 1998;1(2):117–21.

    Article  PubMed  Google Scholar 

  46. Wilson C, Lammertsma A, McKenzie C, Sikora K, Jones T. Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res 1992;52(6):1592–7.

    CAS  PubMed  Google Scholar 

  47. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007;27(9):1533–9.

    Article  CAS  PubMed  Google Scholar 

  48. Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow Metab 1993;13(1):15–23.

    CAS  PubMed  Google Scholar 

  49. Tawhai MH, Burrowes KS. Modelling pulmonary blood flow. Respir Physiol Neurobiol 2008;163(1–3):150–7.

    Article  PubMed  Google Scholar 

  50. Anonymous. Analytical Methods Committee: AMC Technical Brief. Tech. Rep.; Royal Society of Chemistry; 2003.

  51. Ruotsalainen U, Raitakari M, Nuutila P, Oikonen V, Sipilä H, Teräs M, et al. Quantitative blood flow measurement of skeletal muscle using oxygen-15-water and PET. J Nucl Med 1997;38(2):314–9.

    CAS  PubMed  Google Scholar 

  52. Anderson HL, Yap JT, Miller MP, Robbins A, Jones T, Price PM. Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J Clin Oncol 2003;21(15):2823–30.

    Article  CAS  PubMed  Google Scholar 

  53. Liao D, Johnson RS. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 2007;26(2):281–90.

    Article  CAS  PubMed  Google Scholar 

  54. Turkbey B, Kobayashi H, Ogawa M, Bernardo M, Choyke PL. Imaging of tumor angiogenesis: functional or targeted? AJR Am J Roentgenol 2009;193(2):304–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

GL and PP’s collaboration was supported by Cancer Research UK. We thank Terry Jones for helpful comments.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Laking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laking, G., Price, P. Radionuclide imaging of perfusion and hypoxia. Eur J Nucl Med Mol Imaging 37 (Suppl 1), 20–29 (2010). https://doi.org/10.1007/s00259-010-1453-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1453-x

Keywords

Navigation