Skip to main content

Advertisement

Log in

Perfusion MRI in the early clinical development of antivascular drugs: decorations or decision making tools?

  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Introduction

Classically, the first step in the clinical development of drugs in oncology involves assessments of dose limiting toxicity (DLT) and maximum tolerated dose (MTD). New paradigms are needed for antiangiogenic drugs and vascular disrupting agents (VDAs) as they are active at doses well below the MTD and as single agents their use might not translate into anti-tumour efficacy. MRI is able to assess the antivascular effects of antivascular drugs via changes in functional kinetic parameters; however, the usefulness of MRI in decision making has been questioned by many.

Objectives

Our aim is to review the experience of using dynamic contrast-enhanced MRI (DCE-MRI) in early clinical development of vascular directed anticancer therapies over the last decade. Thirty-nine phase I and II studies including data on more than 700 patients have been published as abstracts and/or papers, documenting DCE-MRI changes after the administration of antiangiogenic drugs and VDAs.

Discussion

Perfusion MRI is helpful in assessing whether mechanistic goals are achieved, in assisting dose selection for phase II studies, in selecting subpopulations enriched for response and in predicting patient benefit. Imaging tools are increasingly available. Future challenges for imaging include correlation with clinical measures of efficacy and determining relationships with blood and serum biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Collins JM. Functional imaging in phase I studies: decorations or decision making? J Clin Oncol 2003;21:2807–9.

    Article  PubMed  Google Scholar 

  2. Rüegg C, Meuwly JY, Driscoll R, Werffeli P, Zaman K, Stupp R. The quest for surrogate markers of angiogenesis: a paradigm for translational research in tumor angiogenesis and anti-angiogenesis trials. Curr Mol Med 2003;3:673–91.

    Article  PubMed  Google Scholar 

  3. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001;7:987–9.

    Article  CAS  PubMed  Google Scholar 

  4. Kamoun WS, Ley CD, Farrar CT, Duyverman AM, Lahdenranta J, Lacorre DA, et al. Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol 2009;27:2542–52.

    Article  CAS  PubMed  Google Scholar 

  5. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007;11:83–95.

    Article  CAS  PubMed  Google Scholar 

  6. Oostendorp M, Post MJ, Backes WH. Vessel growth and function: depiction with contrast-enhanced MR imaging. Radiology 2009;251:317–35.

    Article  PubMed  Google Scholar 

  7. Kety S. Measurement of local blood flow by the exchange of an inert, diffusible substance. Methods Med Res 1960;8:228–36.

    Google Scholar 

  8. Kety S. Blood-tissue exchange methods. Theory of blood-tissue exchange and its application to measurement of blood flow. Methods Med Res 1960;8:223–7.

    Google Scholar 

  9. Tofts P, Brix G, Buckley D, Evelhoch J, Henderson E, Knopp M, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223–32.

    Article  CAS  PubMed  Google Scholar 

  10. Wilkinson ID, Jellineck DA, Levy D, Giesel FL, Romanowski CA, Miller BA, et al. Dexamethasone and enhancing solitary cerebral mass lesions: alterations in perfusion and blood-tumor barrier kinetics shown by magnetic resonance imaging. Neurosurgery 2006;58:640–6. discussion 640-6.

    Article  PubMed  Google Scholar 

  11. O’Connor JP, Carano RA, Clamp AR, Ross J, Ho CC, Jackson A, et al. Quantifying antivascular effects of monoclonal antibodies to vascular endothelial growth factor: insights from imaging. Clin Cancer Res 2009;15:6674–82.

    Article  PubMed  Google Scholar 

  12. Lankester KJ, Maxwell RJ, Pedley RB, Dearling JL, Qureshi UA. E, et al. Combretastatin A-4-phosphate effectively increases tumor retention of the therapeutic antibody, 131I-A5B7, even at doses that are sub-optimal for vascular shut-down. Int J Oncol 2007;30:453–60.

    CAS  PubMed  Google Scholar 

  13. Lankester KJ, Taylor JN, Stirling JJ, Boxall J, d’Arcy JA, Collins DJ, et al. Dynamic MRI for imaging tumor microvasculature: comparison of susceptibility and relaxivity techniques in pelvic tumors. J Magn Reson Imaging 2007;25:796–805.

    Article  PubMed  Google Scholar 

  14. Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 2005;92:1599–610.

    Article  CAS  PubMed  Google Scholar 

  15. Lankester KJ, Taylor NJ, Stirling JJ, Boxall J, D’Arcy JA, Leach MO, et al. Effects of platinum/taxane based chemotherapy on acute perfusion in human pelvic tumours measured by dynamic MRI. Br J Cancer 2005;93:979–85.

    Article  CAS  PubMed  Google Scholar 

  16. Thukral A, Thomasson DM, Chow CK, Eulate R, Wedam SB, Gupta SN, et al. Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab–initial experience. Radiology 2007;244:727–35.

    Article  PubMed  Google Scholar 

  17. Walker-Samuel S, Parker CC, Leach MO, Collins DJ. Reproducibility of reference tissue quantification of dynamic contrast-enhanced data: comparison with a fixed vascular input function. Phys Med Biol 2007;52:75–89.

    Article  CAS  PubMed  Google Scholar 

  18. Benjamin RS, Choi H, Macapinlac HA, Burgess MA, Patel SR, Chen LL, et al. We should desist using RECIST, at least in GIST. J Clin Oncol 2007;25:1760–4.

    Article  PubMed  Google Scholar 

  19. Taylor NJ, Tunariu N, Stirling JJ, Collins DJ, Nathan P, d’Arcy JA, et al. Non-enhancing pixels: a specific additional DCE-MRI kinetic parameter for assessing antivascular effects of anti-angiogenic and vascular disruptive agents. Proceedings of the joint meeting of International Society of Magnetic Resonance in Medicine, 16th Scientific Meeting and Exhibition, Honolulu; 2009. p. 2262.

  20. Weinmann HJ, Laniado M, Mützel W. Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers. Physiol Chem Phys Med NMR 1984;16:167–72.

    CAS  PubMed  Google Scholar 

  21. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7:91–101.

    Article  CAS  PubMed  Google Scholar 

  22. Buckley DL. Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 2002;47:601–6.

    Article  PubMed  Google Scholar 

  23. Landis CS, Li X, Telang FW, Coderre JA, Micca PL, Rooney WD, et al. Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn Reson Med 2000;44:563–74.

    Article  CAS  PubMed  Google Scholar 

  24. Buckley DL. Transcytolemmal water exchange and its affect on the determination of contrast agent concentration in vivo. Magn Reson Med 2002;47:420–4.

    Article  PubMed  Google Scholar 

  25. Schlemmer HP, Merkle J, Grobholz R, Jaeger T, Michel MS, Werner A, et al. Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol 2004;14:309–17.

    Article  PubMed  Google Scholar 

  26. Padhani AR, Dzik-Jurasz A. Perfusion MR imaging of extracranial tumor angiogenesis. Top Magn Reson Imaging 2004;15:41–57.

    Article  PubMed  Google Scholar 

  27. Ferrier MC, Sarin H, Fung SH, Schatlo B, Pluta RM, Gupta SN, et al. Validation of dynamic contrast-enhanced magnetic resonance imaging-derived vascular permeability measurements using quantitative autoradiography in the RG2 rat brain tumor model. Neoplasia 2007;9:546–55.

    Article  CAS  PubMed  Google Scholar 

  28. Eby PR, Partridge SC, White SW, Doot RK, Dunnwald LK, Schubert EK, et al. Metabolic and vascular features of dynamic contrast-enhanced breast magnetic resonance imaging and (15)O-water positron emission tomography blood flow in breast cancer. Acad Radiol 2008;15:1246–54.

    Article  PubMed  Google Scholar 

  29. Niermann KJ, Fleischer AC, Huamani J, Yankeelov TE, Kim DW, Wilson WD, et al. Measuring tumor perfusion in control and treated murine tumors: correlation of microbubble contrast-enhanced sonography to dynamic contrast-enhanced magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. J Ultrasound Med 2007;26:749–56.

    PubMed  Google Scholar 

  30. Conrad C, Friedman H, Reardon D, Provenzale J, Jackson E, Serajuddin H, et al. A phase I/II trial of single-agent PTK 787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM). J Clin Oncol (Meeting Abstracts), 2004. Vol. 22.

  31. Morgan B, Thomas AL, Drevs J, Hennig J, Buchert M, Jivan A, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 2003;21:3955–64.

    Article  CAS  PubMed  Google Scholar 

  32. Mross K, Drevs J, Müller M, Medinger M, Marmé D, Hennig J, et al. Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours. Eur J Cancer 2005;41:1291–9.

    Article  CAS  PubMed  Google Scholar 

  33. Thomas AL, Morgan B, Horsfield MA, Higginson A, Kay A, Lee L, et al. Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer. J Clin Oncol 2005;23:4162–71.

    Article  CAS  PubMed  Google Scholar 

  34. Drevs J, Medinger M, Mross K, Zirrgiebel U, Strecker R, Unger C, et al. Phase I clinical evaluation of AZD2171, a highly potent VEGF receptor tyrosine kinase inhibitor, in patients with advanced tumors. J Clin Oncol, 2005 ASCO Annual Meeting Proceedings 2005;23:3002.

    Google Scholar 

  35. Liu G, Rugo HS, Wilding G, McShane TM, Evelhoch JL, Ng C, et al. Dynamic contrast-enhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG-013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a phase I study. J Clin Oncol 2005;23:5464–73.

    Article  CAS  PubMed  Google Scholar 

  36. Medved M, Karczmar G, Yang C, Dignam J, Gajewski TF, Kindler H, et al. Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: variability and changes in tumor tissue over time. J Magn Reson Imaging 2004;20:122–8.

    Article  PubMed  Google Scholar 

  37. O’Donnell A, Padhani A, Hayes C, Kakkar AJ, Leach M, Trigo JM, et al. A Phase I study of the angiogenesis inhibitor SU5416 (semaxanib) in solid tumours, incorporating dynamic contrast MR pharmacodynamic end points. Br J Cancer 2005;93:876–83.

    Article  PubMed  Google Scholar 

  38. Dowlati A, Robertson K, Radivoyevitch T, Waas J, Ziats NP, Hartman P, et al. Novel Phase I dose de-escalation design trial to determine the biological modulatory dose of the antiangiogenic agent SU5416. Clin Cancer Res 2005;11:7938–44.

    Article  CAS  PubMed  Google Scholar 

  39. Xiong HQ, Herbst R, Faria SC, Scholz C, Davis D, Jackson EF, et al. A phase I surrogate endpoint study of SU6668 in patients with solid tumors. Invest New Drugs 2004;22:459–66.

    Article  CAS  PubMed  Google Scholar 

  40. Rosen LS, Kurzrock R, Mulay M, Van Vugt A, Purdom M, Ng C, et al. Safety, pharmacokinetics, and efficacy of AMG 706, an oral multikinase inhibitor, in patients with advanced solid tumors. J Clin Oncol 2007;25:2369–76.

    Article  CAS  PubMed  Google Scholar 

  41. Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 2002;94:1484–93.

    CAS  PubMed  Google Scholar 

  42. Hahn OM, Yang C, Medved M, Karczmar G, Kistner E, Karrison T, et al. Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol 2008;26:4572–8.

    Article  CAS  PubMed  Google Scholar 

  43. Flaherty KT, Rosen MA, Heitjan DF, Gallagher ML, Schwartz B, Schnall MD, et al. Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 2008;7:496–501.

    CAS  PubMed  Google Scholar 

  44. Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M, et al. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 2009;69:5296–300.

    Article  CAS  PubMed  Google Scholar 

  45. Zhu AX, Sahani DV, Duda DG, di Tomaso E, Ancukiewicz M, Catalano OA, et al. Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol 2009;27:3027–35.

    Article  CAS  PubMed  Google Scholar 

  46. Wedam SB, Low JA, Yang SX, Chow CK, Choyke P, Danforth D, et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 2006;24:769–77.

    Article  CAS  PubMed  Google Scholar 

  47. Overmoyer B, Silverman P, Leeming R, Shenk R, Lyons J, Ziats N, et al. Phase II trial of neoadjuvant docetaxel with or without bevacizumab in patients with locally advanced breast cancer. J Clin Oncol, 2004 ASCO Annual Meeting Proceedings. 2004;22:Abstract 727.

    Google Scholar 

  48. Baar J, Silverman P, Lyons J, Fu P, Abdul-Karim F, Ziats N, et al. A vasculature-targeting regimen of preoperative docetaxel with or without bevacizumab for locally advanced breast cancer: impact on angiogenic biomarkers. Clin Cancer Res 2009;15:3583–90.

    Article  CAS  PubMed  Google Scholar 

  49. Galbraith SM, Rustin GJ, Lodge MA, Taylor NJ, Stirling JJ, Jameson M, et al. Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J Clin Oncol 2002;20:3826–40.

    Article  CAS  PubMed  Google Scholar 

  50. McKeage MJ, Fong P, Jeffery M, Baguley BC, Kestell P, Ravic M, et al. 5,6-Dimethylxanthenone-4-acetic acid in the treatment of refractory tumors: a phase I safety study of a vascular disrupting agent. Clin Cancer Res 2006;12:1776–84.

    Article  CAS  PubMed  Google Scholar 

  51. Evelhoch J, LoRusso P, DelProposto Z, Stark K, Latif Z, Morton P, et al. Dynamic contrast-enhanced MRI evaluation of the effects of ZD6126 on tumor vasculature in a phase I clinical trial, Proc. ISMRM, Honolulu, Hawaii, 2002. Vol. 10.

  52. LoRusso PM, Gadgeel SM, Wozniak A, Barge AJ, Jones HK, DelProposto ZS, et al. Phase I clinical evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumors. Invest New Drugs 2008;26:159–67.

    Article  CAS  PubMed  Google Scholar 

  53. Rustin GJ, Galbraith SM, Anderson H, Stratford M, Folkes LK, Sena L, et al. Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J Clin Oncol 2003;21:2815–22.

    Article  CAS  PubMed  Google Scholar 

  54. Galbraith SM, Maxwell RJ, Lodge MA, Tozer GM, Wilson J, Taylor NJ, et al. Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 2003;21:2831–42.

    Article  CAS  PubMed  Google Scholar 

  55. Dowlati A, Robertson K, Cooney M, Petros WP, Stratford M, Jesberger J, et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin A-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res 2002;62:3408–16.

    CAS  PubMed  Google Scholar 

  56. Stevenson JP, Rosen M, Sun W, Gallagher M, Haller DG, Vaughn D, et al. Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J Clin Oncol 2003;21:4428–38.

    Article  CAS  PubMed  Google Scholar 

  57. Bilenker JH, Flaherty KT, Rosen M, Davis L, Gallagher M, Stevenson JP, et al. Phase I trial of combretastatin A-4 phosphate with carboplatin. Clin Cancer Res 2005;11:1527–33.

    Article  CAS  PubMed  Google Scholar 

  58. Nathan P, Judson I, Padhani A, Harris A, Carden CP, Smythe J, et al. A phase I study of combretastatin A4 phosphate (CA4P) and bevacizumab in subjects with advanced solid tumors. J Clin Oncol 2008;26:3550.

    Article  Google Scholar 

  59. Akerley WL, Schabel M, Morrell G, Horvath E, Yu M, Johnsson B, et al. A randomized phase 2 trial of combretastatin A4 phosphate (CA4P) in combination with paclitaxel and carboplatin to evaluate safety and efficacy in subjects with advanced imageable malignancies. J Clin Oncol, ASCO Annual Meeting Proceedings Part I. 2007;25:14060.

    Google Scholar 

  60. Meyer T, Gaya AM, Dancey G, Stratford MR, Othman S, Sharma SK, et al. A phase I trial of radioimmunotherapy with 131I-A5B7 anti-CEA antibody in combination with combretastatin-A4-phosphate in advanced gastrointestinal carcinomas. Clin Cancer Res 2009;15:4484–92.

    Article  CAS  PubMed  Google Scholar 

  61. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 2006;313:1785–7.

    Article  CAS  PubMed  Google Scholar 

  62. Padhani AR, Koh DM, Taylor NJ, Stirling JJ, Collins DJ, Rustin GJ, et al. DCE-MRI demonstration of antivascular effects of combretastatin A4 phosphate (CA4P) given in combination with bevacizumab to human subjects with advanced solid tumours. Proceedings of the joint meeting of International Society of Magnetic Resonance in Medicine and European Society for Magnetic Resonance in Medicine and Biology 2008:Oral presentation. Program number 773.

  63. Anderson H, Yap JT, Wells P, Miller MP, Propper D, Price P, et al. Measurement of renal tumour and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br J Cancer 2003;89:262–7.

    Article  CAS  PubMed  Google Scholar 

  64. Jayson GC, Parker GJ, Mullamitha S, Valle JW, Saunders M, Broughton L, et al. Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab', leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 2005;23:973–81.

    Article  CAS  PubMed  Google Scholar 

  65. Padhani AR, Taylor NJ, d’Arcy JA, Walker-Samuel S, Collins DJ, Knowles B, et al. Dynamic MRI evaluation of the triple receptor tyrosine kinase inhibitor BIBF 1120 in patients with advanced solid tumours. Proc Int Soc Magn Reson Med 2006;14:765.

    Google Scholar 

  66. Strecker R, Mross K, Stefanic M, de Rossi L, Hennig J. Evaluation of the effects of the triple angiokinase inhibitor BIBF 1120 on tumor vasculature in a phase I clinical trial using dynamic contrast-enhanced MRI (DCE-MRI). Proc Int Soc Magn Reson Med 2006;14:764.

    Google Scholar 

  67. Jonker DJ, Rosen LS, Sawyer M, Wilding G, Noberasco C, Jayson G, et al. A phase I study of BMS-582664 (brivanib alaninate), an oral dual inhibitor of VEGFR and FGFR tyrosine kinases, in patients (pts) with advanced/metastatic solid tumors: safety, pharmacokinetic (PK), and pharmacodynamic (PD) findings. J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I. 2007;25:Abstract 3559.

    Google Scholar 

  68. NCI. Recommendations for MR measurement methods at 1.5-Tesla and endpoints for use in Phase 1/2a trials of anti-cancer therapeutics affecting tumor vascular function. http://imaging.cancer.gov/images/Documents/14a39040-dad1-46f8-bf88-bae2e7401ebe/DCE_RecommendationfromNov2004NCIWorkshop(2).pdf, 2004.

  69. Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 2005;92:1599–610.

    Article  CAS  PubMed  Google Scholar 

  70. Evelhoch J, Garwood M, Vigneron D, Knopp M, Sullivan D, Menkens A, et al. Expanding the use of magnetic resonance in the assessment of tumor response to therapy: workshop report. Cancer Res 2005;65:7041–4.

    Article  CAS  PubMed  Google Scholar 

  71. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004;10:145–7.

    Article  CAS  PubMed  Google Scholar 

  72. Herbst RS, Mullani NA, Davis DW, Hess KR, McConkey DJ, Charnsangavej C, et al. Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol 2002;20:3804–14.

    Article  CAS  PubMed  Google Scholar 

  73. Loges S, Mazzone M, Hohensinner P, Carmeliet P. Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 2009;15:167–70.

    Article  CAS  PubMed  Google Scholar 

  74. Patterson DM, Padhani AR, Collins DJ. Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 2008;5:220–33.

    Article  PubMed  Google Scholar 

  75. O’Dwyer PJ, Rosen M, Gallagher M, Schwartz B, Flaherty KT. Pharmacodynamic study of BAY 43-9006 in patients with metastatic renal cell carcinoma. J Clin Oncol (Meeting Abstracts). 2005;23:3005.

    Google Scholar 

  76. Rosen LS, Wilding G, Sweeney C, Casale D, Kollia G, Wu C, et al. Phase I dose escalation study to determine the safety, pharmacokinetics and pharmacodynamics of BMS-582664, a VEGFR/FGFR inhibitor in patients with advanced/metastatic solid tumors. J Clin Oncol (Meeting Abstracts). 2006;24:3051.

    Google Scholar 

  77. Mross KB, Gmehling D, Frost A, Baas F, Strecker R, Hennig J, et al. A clinical phase I, pharmacokinetic (PK), and pharmacodynamic study of twice daily BIBF 1120 in advanced cancer patients. J Clin Oncol (Meeting Abstracts), 2005. Vol. 23.

  78. Eder Jr JP, Supko JG, Clark JW, Puchalski TA, Garcia-Carbonero R, Ryan DP, et al. Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. J Clin Oncol 2002;20:3772–84.

    Article  CAS  PubMed  Google Scholar 

  79. Thomas JP, Arzoomanian RZ, Alberti D, Marnocha R, Lee F, Friedl A, et al. Phase I pharmacokinetic and pharmacodynamic study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 2003;21:223–31.

    Article  CAS  PubMed  Google Scholar 

  80. Watson Y, Cheung S, Roberts C, Buonaccorsi G, Davies K, Jackson A, et al. Prognostic power of DCE-MRI heterogeneity analysis in patients with advanced solid tumors. Proc Int Soc Magn Reson Med 2006;14:755.

    Google Scholar 

  81. Perotti A, Sessa C, Mancuso A, Noberasco C, Cresta S, Locatelli A, et al. Clinical and pharmacological phase I evaluation of Exherin (ADH-1), a selective anti-N-cadherin peptide in patients with N-cadherin-expressing solid tumours. Ann Oncol 2009;20:741–5.

    Article  CAS  PubMed  Google Scholar 

  82. Patterson DM, Charnley N, Saleem A, Stratford M, Dickinson C, Asselin M, et al. Phase I evaluation of vascular disrupting agent OXi4503. J Clin Oncol. 2008;26:Abstract 3551.

    Google Scholar 

  83. Evelhoch JL, LoRusso PM, He Z, DelProposto Z, Polin L, Corbett TH, et al. Magnetic resonance imaging measurements of the response of murine and human tumors to the vascular-targeting agent ZD6126. Clin Cancer Res 2004;10:3650–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar R. Padhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zweifel, M., Padhani, A.R. Perfusion MRI in the early clinical development of antivascular drugs: decorations or decision making tools?. Eur J Nucl Med Mol Imaging 37 (Suppl 1), 164–182 (2010). https://doi.org/10.1007/s00259-010-1451-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1451-z

Keywords

Navigation