Skip to main content

Advertisement

Log in

Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to prospectively compare the diagnostic value of whole-body diffusion-weighted imaging (DWI) and FDG PET/CT for breast cancer (BC) staging.

Methods

Twenty BC patients underwent whole-body FDG PET/CT and 1.5-T DWI. Lesions with qualitatively elevated signal intensity on DW images (b = 800 s/mm2) were rated as suspicious for tumour and mapped to individual lesions and different compartments (overall 552 lesions). The apparent diffusion coefficient (ADC) value was determined for quantitative evaluation. Histopathology, MRI findings, bone scan findings, concordant findings between FDG PET/CT and DWI, CT follow-up scans and plausibility served as the standards of reference defining malignancy.

Results

According to the standards of reference, breasts harboured malignancy in 11, regional lymph nodes in 4, M1 lymph nodes in 3, bone in 7, lung in 2, liver in 3 and other tissues in 3 patients. On a compartment basis, the sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) for the detection of malignancies were 94, 99, 98, 97 and 98% for FDG PET/CT and 91, 72, 76, 50 and 96% for DWI, respectively. Of the lesions seen on DWI only, 348 (82%) turned out to be false-positive compared to 23 (11%) on FDG PET/CT. The average lesion ADC was 820 ± 300 with true-positive lesions having 929 ± 252 vs 713 ± 305 in false-positive lesions (p < 0.0001).

Conclusion

Based on these initial data DWI seems to be a sensitive but unspecific modality for the detection of locoregional or metastatic BC disease. There was no possibility to quantitatively distinguish lesions using ADC. DWI alone may not be recommended as a whole-body staging alternative to FDG PET(/CT). Further studies are necessary addressing the question of whether full-body MRI including DWI may become an alternative to FDG PET/CT for whole-body breast cancer staging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin 2008;58:71–96.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009;59:225–49.

    Article  PubMed  Google Scholar 

  3. Rubens RD. 7. Management of advanced breast cancer. Int J Clin Pract 2001;55:676–9.

    PubMed  CAS  Google Scholar 

  4. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol 2007;608:1–22.

    Article  PubMed  Google Scholar 

  5. Radan L, Ben-Haim S, Bar-Shalom R, Guralnik L, Israel O. The role of FDG-PET/CT in suspected recurrence of breast cancer. Cancer 2006;107:2545–51.

    Article  PubMed  Google Scholar 

  6. Rosen EL, Eubank WB, Mankoff DA. FDG PET, PET/CT, and breast cancer imaging. Radiographics 2007;27 Suppl 1:S215–29.

    Article  PubMed  Google Scholar 

  7. Dirisamer A, Halpern BS, Flöry D, Wolf F, Beheshti M, Mayerhoefer ME, et al. Integrated contrast-enhanced diagnostic whole-body PET/CT as a first-line restaging modality in patients with suspected metastatic recurrence of breast cancer. Eur J Radiol 2010;73:294–9.

    Article  PubMed  Google Scholar 

  8. Hayashi M, Murakami K, Oyama T, Domeki Y, Hagiwara S, Katsumata D, et al. PET/CT supports breast cancer diagnosis and treatment. Breast Cancer 2008;15:224–30.

    Article  PubMed  Google Scholar 

  9. Heusner TA, Freudenberg LS, Kuehl H, Hauth EA, Veit-Haibach P, Forsting M, et al. Whole-body PET/CT-mammography for staging breast cancer: initial results. Br J Radiol 2008;81:743–8.

    Article  PubMed  Google Scholar 

  10. Heusner TA, Kuemmel S, Umutlu L, Koeninger A, Freudenberg LS, Hauth EA, et al. Breast cancer staging in a single session: whole-body PET/CT mammography. J Nucl Med 2008;49:1215–22.

    Article  PubMed  Google Scholar 

  11. Heusner TA, Kuemmel S, Hahn S, Koeninger A, Otterbach F, Hamami ME, et al. Diagnostic value of full-dose FDG PET/CT for axillary lymph node staging in breast cancer patients. Eur J Nucl Med Mol Imaging 2009;36:1543–50.

    Article  PubMed  CAS  Google Scholar 

  12. Holdsworth SJ, Bammer R. Magnetic resonance imaging techniques: fMRI, DWI, and PWI. Semin Neurol 2008;28:395–406.

    Article  PubMed  Google Scholar 

  13. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007;188:1622–35.

    Article  PubMed  Google Scholar 

  14. Vilanova JC, Barcelo J. Diffusion-weighted whole-body MR screening. Eur J Radiol 2008;67:440–7.

    Article  PubMed  Google Scholar 

  15. Barceló J, Vilanova JC, Riera E, Balliu E, Peláez I, Martí J, et al. Diffusion-weighted whole-body MRI (virtual PET) in screening for osseous metastases. Radiologia 2007;49:407–15. Spanish.

    Article  PubMed  Google Scholar 

  16. Nakanishi K, Kobayashi M, Nakaguchi K, Kyakuno M, Hashimoto N, Onishi H, et al. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 2007;6:147–55.

    Article  PubMed  Google Scholar 

  17. Charles-Edwards EM, deSouza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 2006;6:135–43.

    Article  PubMed  Google Scholar 

  18. Bohlscheid A, Nuss D, Lieser S, Busch HP. Tumor search with diffusion-weighted imaging–first experience. Rofo 2008;180:302–9. German.

    PubMed  CAS  Google Scholar 

  19. Ohno Y, Koyama H, Onishi Y, Takenaka D, Nogami M, Yoshikawa T, et al. Non-small cell lung cancer: whole-body MR examination for M-stage assessment–utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology 2008;248:643–54.

    Article  PubMed  Google Scholar 

  20. Szafer A, Zhong J, Anderson AW, Gore JC. Diffusion-weighted imaging in tissues: theoretical models. NMR Biomed 1995;8:289–96.

    Article  PubMed  CAS  Google Scholar 

  21. Luboldt W, Kufer R, Blumstein N, Toussaint TL, Kluge A, Seemann MD, et al. Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology 2008;249:1017–25.

    Article  PubMed  Google Scholar 

  22. Nakayama T, Yoshida S, Fujii Y, Koga F, Saito K, Masuda H, et al. Use of diffusion-weighted MRI in monitoring response of lymph node metastatic bladder cancer treated with chemotherary. Nippon Hinyokika Gakkai Zasshi 2008;99:737–41. Japanese.

    PubMed  Google Scholar 

  23. Mori T, Nomori H, Ikeda K, Kawanaka K, Shiraishi S, Katahira K, et al. Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J Thorac Oncol 2008;3:358–64.

    Article  PubMed  Google Scholar 

  24. Nomori H, Mori T, Ikeda K, Kawanaka K, Shiraishi S, Katahira K, et al. Diffusion-weighted magnetic resonance imaging can be used in place of positron emission tomography for N staging of non-small cell lung cancer with fewer false-positive results. J Thorac Cardiovasc Surg 2008;135:816–22.

    Article  PubMed  Google Scholar 

  25. Kanauchi N, Oizumi H, Honma T, Kato H, Endo M, Suzuki J, et al. Role of diffusion-weighted magnetic resonance imaging for predicting of tumor invasiveness for clinical stage IA non-small cell lung cancer. Eur J Cardiothorac Surg 2009;35:706–10.

    Article  PubMed  Google Scholar 

  26. Keskek M, Balas S, Gokoz A, Sayek I. Re-evaluation of axillary skip metastases in the era of sentinel lymph node biopsy in breast cancer. Surg Today 2006;36:1047–52.

    Article  PubMed  Google Scholar 

  27. Veronesi U, Rilke F, Luini A, Sacchini V, Galimberti V, Campa T, et al. Distribution of axillary node metastases by level of invasion. An analysis of 539 cases. Cancer 1987;59:682–7.

    Article  PubMed  CAS  Google Scholar 

  28. Rosen PP, Lesser ML, Kinne DW, Beattie EJ. Discontinuous or “skip” metastases in breast carcinoma. Analysis of 1228 axillary dissections. Ann Surg 1983;197:276–83.

    Article  PubMed  CAS  Google Scholar 

  29. Antoch G, Kuehl H, Kanja J, Lauenstein TC, Schneemann H, Hauth E, et al. Dual-modality PET/CT scanning with negative oral contrast agent to avoid artifacts: introduction and evaluation. Radiology 2004;230:879–85.

    Article  PubMed  Google Scholar 

  30. Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 2003;30:588–96.

    PubMed  Google Scholar 

  31. Komori T, Narabayashi I, Matsumura K, Matsuki M, Akagi H, Ogura Y, et al. 2-[Fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions: initial experience. Ann Nucl Med 2007;21:209–15.

    Article  PubMed  Google Scholar 

  32. Holzapfel K, Duetsch S, Fauser C, Eiber M, Rummeny EJ, Gaa J. Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes. Eur J Radiol 2009;72:381–7.

    Article  PubMed  Google Scholar 

  33. Taouli B, Thakur RK, Mannelli L, Babb JS, Kim S, Hecht EM, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 2009;251:398–407.

    Article  PubMed  Google Scholar 

  34. Ono K, Ochiai R, Yoshida T, Kitagawa M, Omagari J, Kobayashi H, et al. Comparison of diffusion-weighted MRI and 2-[fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for detecting primary colorectal cancer and regional lymph node metastases. J Magn Reson Imaging 2009;29:336–40.

    Article  PubMed  Google Scholar 

  35. Luo JD, Liu YY, Zhang XL, Shi LC. Application of diffusion weighted magnetic resonance imaging to differential diagnosis of breast diseases. Ai Zheng 2007;26:168–71. Chinese.

    PubMed  Google Scholar 

  36. Lo GG, Ai V, Chan JK, Li KW, Cheung PS, Wong TT, et al. Diffusion-weighted magnetic resonance imaging of breast lesions: first experiences at 3 T. J Comput Assist Tomogr 2009;33:63–9.

    Article  PubMed  Google Scholar 

  37. Rubesova E, Grell AS, De Maertelaer V, Metens T, Chao SL, Lemort M. Quantitative diffusion imaging in breast cancer: a clinical prospective study. J Magn Reson Imaging 2006;24:319–24.

    Article  PubMed  Google Scholar 

  38. Partridge SC. Future applications and innovations of clinical breast magnetic resonance imaging. Top Magn Reson Imaging 2008;19:171–6.

    Article  PubMed  Google Scholar 

  39. Yoshikawa MI, Ohsumi S, Sugata S, Kataoka M, Takashima S, Kikuchi K, et al. Comparison of breast cancer detection by diffusion-weighted magnetic resonance imaging and mammography. Radiat Med 2007;25:218–23.

    Article  PubMed  Google Scholar 

  40. Sharma U, Danishad KK, Seenu V, Jagannathan NR. Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed 2009;22:104–13.

    Article  PubMed  Google Scholar 

  41. Yoshikawa MI, Ohsumi S, Sugata S, Kataoka M, Takashima S, Mochizuki T, et al. Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiat Med 2008;26:222–6.

    Article  PubMed  Google Scholar 

  42. Yabuuchi H, Matsuo Y, Okafuji T, Kamitani T, Soeda H, Setoguchi T, et al. Enhanced mass on contrast-enhanced breast MR imaging: lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted MR images. J Magn Reson Imaging 2008;28:1157–65.

    Article  PubMed  Google Scholar 

  43. Yili Z, Xiaoyan H, Hongwen D, Yun Z, Xin C, Peng W, et al. The value of diffusion-weighted imaging in assessing the ADC changes of tissues adjacent to breast carcinoma. BMC Cancer 2009;9:18.

    Article  PubMed  Google Scholar 

  44. Blodgett TM, Meltzer CC, Townsend DW. PET/CT: form and function. Radiology 2007;242:360–85.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till-Alexander Heusner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heusner, TA., Kuemmel, S., Koeninger, A. et al. Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging. Eur J Nucl Med Mol Imaging 37, 1077–1086 (2010). https://doi.org/10.1007/s00259-010-1399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1399-z

Keywords

Navigation