Skip to main content

Advertisement

Log in

68Ga-labelled recombinant antibody variants for immuno-PET imaging of solid tumours

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Recombinant antibodies isolated from human antibody libraries have excellent affinities and high target specificity. As full-length IgGs are cleared inadequately slowly from the circulation, the aim of this work was to figure out which kind of recombinant antibody fragment proves to be appropriate for imaging epithelial cell adhesion molecule (EpCAM)-expressing tumours with the short-living radioisotope 68Ga.

Methods

In order to combine the promising tumour targeting properties of antibodies with 68Ga, four antibody variants with the same specificity and origin only differing in molecular weight were constructed for comparison. Therefore, the binding domains of a single-chain fragment variable (scFv) isolated from a human naïve antibody library were modified genetically to construct the respective full-length IgG, the tria- and diabody variants. These molecules were conjugated with the bifunctional chelating agent N,N′-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid (HBED-CC) to enable 68Ga labelling at ambient temperature and compared in biodistribution and immuno-PET imaging experiments.

Results

The antibody variants with identical specificity proved to have the correct molecular weight, high binding affinity and specificity to their antigen, EpCAM. Radiometal complexation was efficiently performed at room temperature leading to 68Ga-labelled antibodies with unchanged binding properties compared to the original antibody variants. The best targeting properties were obtained with the scFv and especially with the diabody. The triabody showed higher absolute tumour uptake but only moderate clearance from circulation.

Conclusion

The antibody variants differed considerably in normal organ uptake, clearance from circulation and tumour accumulation. The data demonstrate the feasibility of imaging solid tumours with the 68Ga-labelled diabody format. This type of recombinant protein might be a promising carrier even for the short-lived radiometal 68Ga to support e.g. the management of immunotherapy which may provide important information regarding receptor expression of solid tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol 2007;34:757–78.

    Article  CAS  PubMed  Google Scholar 

  2. Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 2004;5:292–302.

    Article  CAS  PubMed  Google Scholar 

  3. Oriuchi N, Higuchi T, Hanaoka H, Iida Y, Endo K. Current status of cancer therapy with radiolabeled monoclonal antibody. Ann Nucl Med 2005;19:355–65.

    Article  CAS  PubMed  Google Scholar 

  4. Nayak TK, Brechbiel MW. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem 2009.

  5. Olafsen T, Kenanova VE, Sundaresan G, Anderson AL, Crow D, Yazaki PJ, et al. Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 2005;65:5907–16.

    Article  CAS  PubMed  Google Scholar 

  6. Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 2005;65:1471–8.

    Article  CAS  PubMed  Google Scholar 

  7. Wong JY, Chu DZ, Williams LE, Yamauchi DM, Ikle DN, Kwok CS, et al. Pilot trial evaluating an 123I-labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment (cT84.66 minibody) in patients with colorectal cancer. Clin Cancer Res 2004;10:5014–21.

    Article  CAS  PubMed  Google Scholar 

  8. Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, et al. Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 2003;9:571–9.

    CAS  PubMed  Google Scholar 

  9. Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 2003;44:1962–9.

    CAS  PubMed  Google Scholar 

  10. Todorovska A, Roovers RC, Dolezal O, Kortt AA, Hoogenboom HR, Hudson PJ. Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J Immunol Methods 2001;248:47–66.

    Article  CAS  PubMed  Google Scholar 

  11. Hudson PJ, Kortt AA. High avidity scFv multimers; diabodies and triabodies. J Immunol Methods 1999;231:177–89.

    Article  CAS  PubMed  Google Scholar 

  12. Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A 1993;90:6444–8.

    Article  CAS  PubMed  Google Scholar 

  13. Cai W, Olafsen T, Zhang X, Cao Q, Gambhir SS, Williams LE, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 2007;48:304–10.

    Article  CAS  PubMed  Google Scholar 

  14. Birchler MT, Thuerl C, Schmid D, Neri D, Waibel R, Schubiger A, et al. Immunoscintigraphy of patients with head and neck carcinomas, with an anti-angiogenetic antibody fragment. Otolaryngol Head Neck Surg 2007;136:543–8.

    Article  PubMed  Google Scholar 

  15. Kortt AA, Lah M, Oddie GW, Gruen CL, Burns JE, Pearce LA, et al. Single-chain Fv fragments of anti-neuraminidase antibody NC10 containing five- and ten-residue linkers form dimers and with zero-residue linker a trimer. Protein Eng 1997;10:423–33.

    Article  CAS  PubMed  Google Scholar 

  16. Fani M, André JP, Maecke HR. 68 Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging 2008;3:67–77.

    Article  PubMed  Google Scholar 

  17. Velikyan I, Beyer GJ, Långström B. Microwave-supported preparation of (68)Ga bioconjugates with high specific radioactivity. Bioconjug Chem 2004;15:554–60.

    Article  CAS  PubMed  Google Scholar 

  18. Maecke HR, Hofmann M, Haberkorn U. (68)Ga-labeled peptides in tumor imaging. J Nucl Med 2005;46 Suppl 1:172S–8S.

    CAS  PubMed  Google Scholar 

  19. Eder M, Wängler B, Knackmuss S, LeGall F, Little M, Haberkorn U, et al. Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for (68)Ga-labeled small recombinant antibodies. Eur J Nucl Med Mol Imaging 2008;35:1878–86.

    Article  CAS  PubMed  Google Scholar 

  20. Velikyan I, Maecke H, Langstrom B. Convenient preparation of 68Ga-based PET-radiopharmaceuticals at room temperature. Bioconjug Chem 2008;19:569–73.

    Article  CAS  PubMed  Google Scholar 

  21. Chaudry MA, Sales K, Ruf P, Lindhofer H, Winslet MC. EpCAM an immunotherapeutic target for gastrointestinal malignancy: current experience and future challenges. Br J Cancer 2007;96:1013–9.

    Article  CAS  PubMed  Google Scholar 

  22. Baeuerle PA, Gires O. EpCAM (CD326) finding its role in cancer. Br J Cancer 2007;96:417–23.

    Article  CAS  PubMed  Google Scholar 

  23. de Bono JS, Tolcher AW, Forero A, Vanhove GF, Takimoto C, Bauer RJ, et al. ING-1, a monoclonal antibody targeting Ep-CAM in patients with advanced adenocarcinomas. Clin Cancer Res 2004;10:7555–65.

    Article  PubMed  Google Scholar 

  24. Balzar M, Winter MJ, de Boer CJ, Litvinov SV. The biology of the 17-1A antigen (Ep-CAM). J Mol Med 1999;77:699–712.

    Article  CAS  PubMed  Google Scholar 

  25. Schuhmacher J, Maier-Borst W. A new Ge-68/Ga-68 radioisotope generator system for production of Ga-68 in dilute HCl. Int J Appl Radiat Isot 1981;32:31–6.

    Article  CAS  Google Scholar 

  26. Kipriyanov SM, Moldenhauer G, Little M. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J Immunol Methods 1997;200:69–77.

    Article  CAS  PubMed  Google Scholar 

  27. Kipriyanov SM, Kupriyanova OA, Little M, Moldenhauer G. Rapid detection of recombinant antibody fragments directed against cell-surface antigens by flow cytometry. J Immunol Methods 1996;196:51–62.

    Article  CAS  PubMed  Google Scholar 

  28. Kipriyanov SM. High-level periplasmic expression and purification of scFvs. Methods Mol Biol 2002;178:333–41.

    CAS  PubMed  Google Scholar 

  29. Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 2000;78:1606–19.

    Article  CAS  PubMed  Google Scholar 

  30. Laue TM, Shah BD, Ridgeway TM, Pelletier SL. Analytical ultracentrifugation in biochemistry and polymer science. Cambridge: Royal Society of Chemistry; 1992; p. 90–125.

  31. Gonzales NR, De Pascalis R, Schlom J, Kashmiri SV. Minimizing the immunogenicity of antibodies for clinical application. Tumour Biol 2005;26:31–43.

    Article  CAS  PubMed  Google Scholar 

  32. Yazaki PJ, Wu AM, Tsai SW, Williams LE, Ikler DN, Wong JY, et al. Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison to radioiodinated fragments. Bioconjug Chem 2001;12:220–8.

    Article  CAS  PubMed  Google Scholar 

  33. Adams GP, Shaller CC, Dadachova E, Simmons HH, Horak EM, Tesfaye A, et al. A single treatment of yttrium-90-labeled CHX-A″-C6.5 diabody inhibits the growth of established human tumor xenografts in immunodeficient mice. Cancer Res 2004;64:6200–6.

    Article  CAS  PubMed  Google Scholar 

  34. Khawli LA, Biela B, Hu P, Epstein AL. Comparison of recombinant derivatives of chimeric TNT-3 antibody for the radioimaging of solid tumors. Hybrid Hybridomics 2003;22:1–9.

    Article  CAS  PubMed  Google Scholar 

  35. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005;23:1126–36.

    Article  CAS  PubMed  Google Scholar 

  36. Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 2005;23:1137–46.

    Article  CAS  PubMed  Google Scholar 

  37. Wu AM. Antibodies and antimatter: the resurgence of immuno-PET. J Nucl Med 2009;50:2–5.

    Article  CAS  PubMed  Google Scholar 

  38. Behr TM, Goldenberg DM, Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 1998;25:201–12.

    Article  CAS  PubMed  Google Scholar 

  39. Li L, Olafsen T, Anderson AL, Wu A, Raubitschek AA, Shively JE. Reduction of kidney uptake in radiometal labeled peptide linkers conjugated to recombinant antibody fragments. Site-specific conjugation of DOTA-peptides to a Cys-diabody. Bioconjug Chem 2002;13:985–95.

    Article  CAS  PubMed  Google Scholar 

  40. Balzar M, Briaire-de Bruijn IH, Rees-Bakker HA, Prins FA, Helfrich W, de Leij L, et al. Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions. Mol Cell Biol 2001;21:2570–80.

    Article  CAS  PubMed  Google Scholar 

  41. Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 1990;50:814s–19s.

    CAS  PubMed  Google Scholar 

  42. Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Höidén-Guthenberg I, et al. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 2006;66:4339–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A research grant from the Deutsche Krebshilfe for M. Eder is gratefully acknowledged. There is no other financial relationship of the author as stated above. Biodistribution and PET imaging were kindly performed by U. Schierbaum, K. Leotta and U. Bauder-Wüst (all German Cancer Research Center, Heidelberg, Germany). Dr. Moldenhauer (German Cancer Research Center, Heidelberg, Germany) and Prof. Diehl (Cologne, Germany) are gratefully acknowledged for providing cell lines for cell binding analysis. All animal experiments complied with the current laws of the Federal Republic of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Eder.

Additional information

Financial support

Research grant from the Deutsche Krebshilfe for M. Eder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eder, M., Knackmuss, S., Le Gall, F. et al. 68Ga-labelled recombinant antibody variants for immuno-PET imaging of solid tumours. Eur J Nucl Med Mol Imaging 37, 1397–1407 (2010). https://doi.org/10.1007/s00259-010-1392-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1392-6

Keywords

Navigation