Skip to main content

Advertisement

Log in

Individualized dosimetry in patients undergoing therapy with 177Lu-DOTA-D-Phe1-Tyr3-octreotate

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

In recent years, targeted radionuclide therapy with [177Lu-DOTA0, Tyr3]octreotate for neuroendocrine tumours has yielded promising results. This therapy may be further improved by using individualized dosimetry allowing optimization of the absorbed dose to the tumours and the normal organs. The aim of this study was to investigate the feasibility and reliability of individualized dosimetry based on SPECT in comparison to conventional planar imaging.

Methods

Attenuation-corrected SPECT data were analysed both by using organ-based volumes of interest (VOIs) to obtain the total radioactivity in the organ, and by using small VOIs to measure the tissue radioactivity concentration. During the first treatment session in 24 patients, imaging was performed 1, 24, 96 and 168 h after [177Lu-DOTA0, Tyr3]octreotate infusion. Absorbed doses in non tumour-affected kidney, liver and spleen were calculated and compared for all three methods (planar imaging, SPECT organ VOIs, SPECT small VOIs).

Results

Planar and SPECT dosimetry were comparable in areas free of tumours, but due to overlap the planar dosimetry highly overestimated the absorbed dose in organs with tumours. Furthermore, SPECT dosimetry based on small VOIs proved to be more reliable than whole-organ dosimetry.

Conclusion

We conclude that SPECT dosimetry based on small VOIs is feasible and more accurate than conventional planar dosimetry, and thus may contribute towards optimising targeted radionuclide therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Virgolini I, Britton K, Buscombe J, Moncayo R, Paganelli G, Riva P. In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin Nucl Med 2002;32:148–55.

    Article  PubMed  Google Scholar 

  2. Bodei L, Cremonesi M, Grana C, Rocca P, Bartolomei M, Chinol M, et al. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2004;31:1038–46.

    Article  CAS  PubMed  Google Scholar 

  3. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, Anthony LB, Pauwels S, Kvols LK, et al. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 2005;46:62S–6.

    CAS  PubMed  Google Scholar 

  4. Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA, et al. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 2005;23:2754–62.

    Article  CAS  PubMed  Google Scholar 

  5. Valkema R, Pauwels S, Kvols LK, Barone R, Jamar F, Bakker WH, et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 2006;36:147–56.

    Article  PubMed  Google Scholar 

  6. Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate: toxicity, efficacy and survival. J Clin Oncol 2008;26:2124–30.

    Article  CAS  PubMed  Google Scholar 

  7. Moll S, Nickeleit V, Mueller-Brand J, Brunner FP, Maecke HR, Mihatsch MJ. A new cause of renal thrombotic microangiopathy: yttrium 90-DOTATOC internal radiotherapy. Am J Kidney Dis 2001;37:847–51.

    Article  CAS  PubMed  Google Scholar 

  8. Cybulla M, Weiner SM, Otte A. End-stage renal disease after treatment with 90Y-DOTATOC. Eur J Nucl Med 2001;28:1552–4.

    Article  CAS  PubMed  Google Scholar 

  9. Kwekkeboom DJ, Bakker WH, Kooij PP, Konijnenberg MW, Srinivasan A, Erion JL, et al. [177Lu-DOTAOTyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med 2001;28:1319–25.

    Article  CAS  PubMed  Google Scholar 

  10. Cremonesi M, Ferrari M, Bodei L, Tosi G, Paganelli G. Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med 2006;47:1467–75.

    CAS  PubMed  Google Scholar 

  11. Wehrmann C, Senftleben S, Zachert C, Müller D, Baum RP. Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother Radiopharm 2007;22:406–16.

    Article  CAS  PubMed  Google Scholar 

  12. Stabin M. Fundamentals of nuclear medicine dosimetry. Springer. 2008; ISBN 978-0-387-74578-7.

  13. Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, et al. Patient-specific dosimetry in predicting renal toxicity with 90Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 2005;46 (Suppl 1):99S–106S.

    CAS  PubMed  Google Scholar 

  14. Konijnenberg M, Melis M, Valkema R, Krenning E, de Jong M. Radiation dose distribution in human kidneys by octreotides in peptide receptor radionuclide therapy. J Nucl Med 2007;48:134–42.

    CAS  PubMed  Google Scholar 

  15. Chowdhury FU, Scarsbrook AF. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications. Clin Radiol 2008;63(3):241–51.

    Article  CAS  PubMed  Google Scholar 

  16. Ljungberg M, Frey E, Sjogreen K, Liu X, Dewaraja Y, Strand SE. 3D absorbed dose calculations based on SPECT: evaluation for 111In/90Y therapy using Monte Carlo simulations. Cancer Biother Radiopharm 2003;18:99–107.

    Article  CAS  PubMed  Google Scholar 

  17. Forrer F, Krenning EP, Kooij PP, Bernard BF, Konijnenberg M, Bakker WH, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate. Eur J Nucl Med Mol Imaging 2009;36:e-pub ahead of print.

  18. Flemming JS. A technique for absolute measurement of activity using a gamma camera and computer. Phys Med Biol 1979;24:176–80.

    Article  Google Scholar 

  19. Leide-Svegborn S. Radiation exposure of the patient in nuclear medicine. Experimental studies of the biokinetics of 111In-DTPA-D-Phe1-octreotide, 99mTc-MIBI, 14C-triolein and 14C-urea and development of dosimetric models. Dissertation: Lund University, 1999.

  20. ICRP. ICRP Publication 23. Reference man: anatomical, physiological and metabolic characteristics. Elsevier; 1975.

  21. Stabin M, Siegel J, Lipsztein J, et al. RADAR (RAdiation Dose Assessment Resource). http://www.doseinfo-radar.com/RADARphan.html. Accessed 14 July 2009.

  22. Williams LE, DeNardo GL, Meredith RF. Targeted radionuclide therapy. Med Phys 2008;35:3062–8.

    Article  CAS  PubMed  Google Scholar 

  23. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46:1023–7.

    PubMed  Google Scholar 

  24. Bernhardt P, Ahlman H, Forssell-Aronsson E. Modelling of metastatic cure after radionuclide therapy: influence of tumor distribution, cross-irradiation, and variable activity concentration. Med Phys 2004;31:2628–35.

    Article  CAS  PubMed  Google Scholar 

  25. Valkema R, Pauwels S, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate. J Nucl Med 2005;46:83S–91.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Professor Eric Krenning and Professor Dik Kwekkeboom, for generously sharing their experience and the peptide supply. They also wish to thank the staff at the Divisions of Nuclear Medicine and Endocrine Oncology (78D), Uppsala University Hospital, for their friendly assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Sandström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandström, M., Garske, U., Granberg, D. et al. Individualized dosimetry in patients undergoing therapy with 177Lu-DOTA-D-Phe1-Tyr3-octreotate. Eur J Nucl Med Mol Imaging 37, 212–225 (2010). https://doi.org/10.1007/s00259-009-1216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1216-8

Keywords

Navigation