Skip to main content
Log in

99mTcO(MAG2-3G3-dimer): a new integrin αvβ3-targeted SPECT radiotracer with high tumor uptake and favorable pharmacokinetics

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This report presents the synthesis of a cyclic RGD dimer conjugate, MAG2-G3-E[G3-c(RGDfK)]2 (MAG2-3G3-dimer, G3 = Gly-Gly-Gly, MAG2 = S-benzoyl mercaptoacetylglycylglycyl), and evaluation of its 99mTc complex, 99mTcO(MAG2-3G3-dimer), as a new radiotracer for imaging the tumor integrin αvβ3 expression.

Methods

An in vitro displacement assay was used to determine the integrin αvβ3 binding affinity of MAG2-3G3-dimer against 125I-c(RGDyK) bound to U87MG human glioma cells. The athymic nude mice bearing U87MG glioma xenografts were used for biodistribution and planar imaging studies.

Results

We found that (1) MAG2 is such a highly effective bifunctional chelator that 99mTcO(MAG2-3G3-dimer) can be prepared in high yield (radiochemical purity >95%) and with high specific activity (∼5 Ci/μmol) using a kit formulation; (2) 99mTcO(MAG2-3G3-dimer) has very high solution stability in the kit matrix; and (3) 99mTcO(MAG2-3G3-dimer) has very fast clearance kinetics from the intestine, liver, and kidneys. Among the 99mTc-labeled cyclic RGD peptides evaluated in the xenografted U87MG glioma models, 99mTcO(MAG2-3G3-dimer) has the best pharmacokinetics and tumor to background ratios (tumor/liver = 4.29 ± 1.00 at 30 min postinjection and 8.29 ± 1.50 at 120 min postinjection; tumor/kidney = 1.16 ± 0.19 at 30 min postinjection and 2.49 ± 0.25 at 120 min postinjection). Planar imaging studies showed that tumors in the glioma-bearing mice administered with 99mTcO(MAG2-3G3-dimer) can be visualized with excellent contrast as early as 15 min postinjection. 99mTcO(MAG2-3G3-dimer) was able to maintain its chemical integrity in kidneys (>80% intact) and liver (>95% intact) over the 2-h period. However, there was significant metabolism (>50% of the injected radioactivity) detected in both urine and feces samples.

Conclusion

99mTcO(MAG2-3G3-dimer) is a very attractive radiotracer for early detection of integrin αvβ3-positive tumors and has significant advantages over the 18F-labeled RGD peptide radiotracers with respect to the cost, availability, and easiness for routine clinical preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weber WA, Haubner R, Vabuliene E, Kuhnast B, Wester HJ, Schwaiger M. Tumor angiogenesis targeting using imaging agents. Q J Nucl Med 2001;45:179–82.

    CAS  PubMed  Google Scholar 

  2. Costouros NG, Diehn FE, Libutti SK. Molecular imaging of tumor angiogenesis. J Cell Biochem Suppl 2002;39:72–8.

    Article  PubMed  Google Scholar 

  3. Liu S, Edwards DS. Fundamentals of receptor-based diagnostic metalloradiopharmaceuticals. Top Curr Chem 2002;222:259–78.

    Article  CAS  Google Scholar 

  4. Van de Wiele C, Oltenfreiter R, De Winter O, Signore A, Slegers G, Dierckx RA. Tumor angiogenesis pathways: related clinical issues and implications for nuclear medicine imaging. Eur J Nucl Med 2002;29:699–709.

    Article  Google Scholar 

  5. Liu S, Robinson SP, Edwards DS. Integrin αvβ3 directed radiopharmaceuticals for tumor imaging. Drugs Future 2003;28:551–64.

    Article  CAS  Google Scholar 

  6. McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nature Med 2003;9:713–25.

    Article  CAS  PubMed  Google Scholar 

  7. Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 2004;10:1439–55.

    Article  CAS  PubMed  Google Scholar 

  8. Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol Pharm 2006;3:472–87.

    Article  CAS  PubMed  Google Scholar 

  9. Chen X. Multimodality imaging of tumor integrin alphavbeta3 expression. Mini Rev Med Chem 2006;6:227–34.

    Article  CAS  PubMed  Google Scholar 

  10. Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 2008;49:113S–28.

    Article  CAS  PubMed  Google Scholar 

  11. Cai W, Niu G, Chen X. Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 2008;14:2943–73.

    Article  CAS  PubMed  Google Scholar 

  12. Hsu AR, Chen X. Advances in anatomic, functional, and molecular imaging of angiogenesis. J Nucl Med 2008;49:511–4.

    Article  PubMed  Google Scholar 

  13. van Hagen PM, Breeman WAP, Bernard HF, Schaar M, Mooij CM, Srinivasan A, et al. Evaluation of a radiolabeled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Int J Cancer 2000;90:186–98.

    Article  PubMed  Google Scholar 

  14. Sivolapenko GB, Skarlos D, Pectasides D, Stathopoulou E, Milonakis A, Sirmalis G, et al. Imaging of metastatic melanoma utilising a technetium-99m labelled RGD-containing synthetic peptide. Eur J Nucl Med 1998;25:1383–9.

    Article  CAS  PubMed  Google Scholar 

  15. Haubner R, Wester HJ, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, Stöcklin G, et al. RGD-peptides for tumor targeting: biological evaluation of radioiodinated analogs and introduction of a novel glycosylated peptide with improved biokinetics. J Labelled Comp Radiopharm 1997;40:383–5.

    Google Scholar 

  16. Haubner R, Wester HJ, Reuning U, Senekowisch-Schmidtke R, Diefenbach B, Kessler H, et al. Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor imaging. J Nucl Med 1999;40:1061–71.

    CAS  PubMed  Google Scholar 

  17. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61:1781–5.

    CAS  PubMed  Google Scholar 

  18. Haubner R, Wester HJ, Burkhart F, Senekowisch-Schmidtke R, Weber W, Goodman SL, et al. Glycolated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001;42:326–36.

    CAS  PubMed  Google Scholar 

  19. Haubner R, Bruchertseifer F, Bock M, Schwaiger M, Wester HJ. Synthesis and biological evaluation of (99m)Tc-labeled cyclic RGD peptide for imaging the alphavbeta3 expression. Nuklearmedizin 2004;43:26–32.

    CAS  PubMed  Google Scholar 

  20. Thumshirn G, Hersel U, Goodman SL, Kessler H. Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry 2003;9:2717–25.

    Article  CAS  PubMed  Google Scholar 

  21. Poethko T, Schottelius M, Thumshirn G, Herz M, Haubner R, Henriksen G, et al. Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation. Radiochim Acta 2004;92:317–27.

    Article  CAS  Google Scholar 

  22. Poethko T, Schottelius M, Thumshirn G, Hersel U, Herz M, Henriksen G, et al. Two-step methodology for high yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. J Nucl Med 2004;45:892–902.

    CAS  PubMed  Google Scholar 

  23. Alves S, Correia JDG, Gano L, Rold TL, Prasanphanich A, Haubner R, et al. In vitro and in vivo evaluation of a novel 99mTc(CO)3-pyrazolyl conjugate of cyclo-(Arg-Gly-Asp-d-Tyr-Lys). Bioconjug Chem 2007;18:530–7.

    Article  CAS  PubMed  Google Scholar 

  24. Fani M, Psimadas D, Zikos C, Xanthopoulos S, Loudos GK, Bouziotis P, et al. Comparative evaluation of linear and cyclic 99mTc-RGD peptides for targeting of integrins in tumor angiogenesis. Anticancer Res 2006;26:431–4.

    CAS  PubMed  Google Scholar 

  25. Decristoforo C, Faintuch-Linkowski B, Rey A, von Guggenberg E, Rupprich M, Hernandez-Gonzales I, et al. [99mTc]HYNIC-RGD for imaging integrin alphavbeta3 expression. Nucl Med Biol 2006;33:945–52.

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, Park R, Tohme M, Shahinian AH, Bading JR, Conti PS. MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 2004;15:41–9.

    Article  PubMed  Google Scholar 

  27. Chen X, Park R, Shahinian AH, Tohme M, Khankaldyyan V, Bozorgzadeh MH, et al. 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 2004;31:179–89.

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR, et al. MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 2004;6:350–9.

    Article  PubMed  Google Scholar 

  29. Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS. Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 2004;3:96–104.

    Article  CAS  PubMed  Google Scholar 

  30. Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al. MicroPET imaging of glioma integrin {alpha}v{beta}3 expression using (64)Cu-labeled tetrameric RGD peptide. J Nucl Med 2005;46:1707–18.

    CAS  PubMed  Google Scholar 

  31. Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 2006;47:113–21.

    CAS  PubMed  Google Scholar 

  32. Wu Z, Li Z, Chen K, Cai W, He L, Chin FT, et al. MicroPET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med 2007;48:1536–44.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Chen X. Preparation and characterization of 99mTc(CO)3-BPy-RGD complex as alphav beta3 integrin receptor-targeted imaging agent. Appl Radiat Isot 2007;65:70–8.

    Article  CAS  PubMed  Google Scholar 

  34. Liu S, Cheung E, Rajopadyhe M, Ziegler MC, Edwards DS. (90)Y- and (177)Lu-labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy. Bioconjug Chem 2001;12:559–68.

    Article  CAS  PubMed  Google Scholar 

  35. Janssen M, Oyen WJG, Massuger LFAG, Frielink C, Dijkgraaf I, Edwards DS, et al. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm 2002;17:641–6.

    Article  CAS  PubMed  Google Scholar 

  36. Janssen M, Oyen WJG, Dijkgraaf I, Massuger LFAG, Frielink C, Edwards DS, et al. Tumor targeting with radiolabeled integrin alpha(v)beta(3) binding peptides in a nude mice model. Cancer Res 2002;62:6146–51.

    CAS  PubMed  Google Scholar 

  37. Liu S, Hsieh WY, Kim YS, Mohammed SI. Effect of coligands on biodistribution characteristics of ternary ligand 99mTc complexes of a HYNIC-conjugated cyclic RGDfK dimer. Bioconjug Chem 2005;16:1580–8.

    Article  CAS  PubMed  Google Scholar 

  38. Jia B, Shi J, Yang Z, Xu B, Liu Z, Zhao H, et al. 99mTc-labeled cyclic RGDfK dimer: initial evaluation for SPECT imaging of glioma integrin alphavbeta3 expression. Bioconjug Chem 2006;17:1069–76.

    Article  CAS  PubMed  Google Scholar 

  39. Liu S, He ZJ, Hsieh WY, Kim YS, Jiang Y. Impact of PKM linkers on biodistribution characteristics of the 99mTc-labeled cyclic RGDfK dimer. Bioconjug Chem 2006;17:1499–507.

    Article  CAS  PubMed  Google Scholar 

  40. Liu S, Hsieh WY, Jiang Y, Kim YS, Sreerama SG, Chen X, et al. Evaluation of a (99m)Tc-labeled cyclic RGD tetramer for noninvasive imaging integrin alpha(v)beta3-positive breast cancer. Bioconjug Chem 2007;18:438–46.

    Article  PubMed  Google Scholar 

  41. Dijkgraaf I, Kruijtzer JAW, Liu S, Soede A, Oyen WJG, Corstens FHM, et al. Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging 2007;34:267–73.

    Article  CAS  PubMed  Google Scholar 

  42. Dijkgraaf I, Liu S, Kruijtzer JAW, Soede AC, Oyen WJG, Liskamp RMJ, et al. Effect of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide. Nucl Med Biol 2007;34:29–35.

    Article  CAS  PubMed  Google Scholar 

  43. Wang JJ, Kim YS, He ZJ, Liu S. 99mTc-labeling of HYNIC-conjugated cyclic RGDfK dimer and tetramer using EDDA as coligand. Bioconjug Chem 2008;19:634–42.

    Article  PubMed  Google Scholar 

  44. Jia B, Liu Z, Shi J, Yu ZL, Yang Z, Zhao HY, et al. Linker effects on biological properties of 111In-labeled DTPA conjugates of a cyclic RGDfK dimer. Bioconjug Chem 2008;19:201–10.

    Article  CAS  PubMed  Google Scholar 

  45. Liu S, Kim YS, Hsieh WY, Sreerama SG. Coligand effects on solution stability, biodistribution and metabolism of 99mTc-labeled cyclic RGDfK tetramer. Nucl Med Biol 2008;35:111–21.

    Article  CAS  PubMed  Google Scholar 

  46. Morrison MS, Ricketts SA, Barnett J, Cuthbertson A, Tessier J, Wedge SR. Use of a novel Arg-Gly-Asp radioligand, 18F-AH111585, to determine changes in tumor vascularity after antitumor therapy. J Nucl Med 2009;50:116–22.

    Article  CAS  PubMed  Google Scholar 

  47. Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, et al. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 2008;49:879–86.

    Article  PubMed  Google Scholar 

  48. Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Webster HJ, et al. Biodistribution and pharmacokineticss of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 2005;46:1333–41.

    CAS  PubMed  Google Scholar 

  49. Haubner R, Weber WA, Beer AJ, Vabulience E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med 2005;2(3):e70.

    Article  PubMed  Google Scholar 

  50. Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, et al. [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 2007;13:6610–6.

    Article  CAS  PubMed  Google Scholar 

  51. Shi J, Wang L, Kim YS, Zhai S, Liu Z, Chen X, et al. Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers. J Med Chem 2008;51:7980–90.

    Article  CAS  PubMed  Google Scholar 

  52. Shi J, Wang L, Kim YS, Zhai S, Liu Z, Chen X, Liu S. Improving tumor uptake and pharmacokinetics of 64Cu-labeled cyclic RGD dimers with triglycine and PEG4 Linkers. Bioconjug Chem Accepted.

  53. Shi J, Kim YS, Chakraborty S, Zhou Y, Wang F, Liu, S. Improving tumor uptake and excretion kinetics of 111In-labeled cyclic RGD peptide dimers with PEG4 and G3 Linkers. Bioconjug Chem Submitted.

  54. Wang L, Kim YS, Shi J, Zhai S, Jia B, Liu Z, et al. Improving tumor-targeting capability and pharmacokinetics of (99m)Tc-labeled cyclic RGD dimers with PEG(4) linkers. Mol Pharm 2009;6:231–45.

    Article  CAS  PubMed  Google Scholar 

  55. Liu S, Edwards DS, Looby RJ, Harris AR, Poirier MJ, Rajopadhye M, et al. Labeling cyclic glycoprotein IIb/IIIa receptor antagonists with 99mTc by the preformed chelate approach: effects of chelators on properties of [99mTc]chelator-peptide conjugates. Bioconjug Chem 1996;7:196–202.

    Article  CAS  PubMed  Google Scholar 

  56. Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther 2006;5:2624–33.

    Article  CAS  PubMed  Google Scholar 

  57. Niu G, Chen X. Has molecular and cellular imaging enhanced drug discovery and drug development? Drugs R D 2008;9:351–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported, in part, by Purdue University and research grants: R01 CA115883 A2 (S.L.) from National Cancer Institute (NCI), R21 HL083961-01 from National Heart, Lung, and Blood Institute (NHLBI), and DE-FG02-08ER64684 from the Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Wang, L., Kim, YS. et al. 99mTcO(MAG2-3G3-dimer): a new integrin αvβ3-targeted SPECT radiotracer with high tumor uptake and favorable pharmacokinetics. Eur J Nucl Med Mol Imaging 36, 1874–1884 (2009). https://doi.org/10.1007/s00259-009-1166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1166-1

Keywords

Navigation