Skip to main content
Log in

18F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK)

  • Short Communication
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Oxime formation between an aminooxy-functionalized peptide and an 18F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides.

Materials and methods

Here, the potential of using routinely produced and thus readily available [18F]fluorodeoxyglucose ([18F]FDG) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK(Aoa-(Boc)) as a model peptide.

Results

The use of [18F]FDG from routine production ([18F]FDGTUM) containing an excess of d-glucose did not allow the radiosynthesis of [18F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [18F]FDG for the routine clinical synthesis of 18F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [18F]FDG obtained via HPLC separation of [18F]FDGTUM from excess glucose, however, afforded [18F]FDG-RGD in yields of 56–93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120°C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [18F]FDG-RGD showed increased tumour accumulation compared to the “gold standard” [18F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds.

Conclusion

These data demonstrate that chemoselective 18F-labelling of aminooxy-functionalized peptides using n.c.a. [18F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of 18F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [18F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [18F]FDG-synthesis, [18F]fluoroglucosylation of peptides may represent a promising alternative to currently used chemoselective one-step 18F-labelling protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Beer AJ, Schwaiger M. Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev 2008;27(4):631–44. doi:10.1007/s10555-008-9158-3.

    Article  PubMed  CAS  Google Scholar 

  2. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 2004;15:61–9. doi:10.1021/bc034170n.

    Article  PubMed  CAS  Google Scholar 

  3. Poethko T, Schottelius M, Thumshirn G, Hersel U, Herz M, Henriksen G, et al. Two-step methodology for high-yield routine radiohalogenation of peptides: (18)F-labeled RGD and octreotide analogs. J Nucl Med 2004;45:892–902.

    PubMed  CAS  Google Scholar 

  4. Prante O, Einsiedel J, Haubner R, Gmeiner P, Wester HJ, Kuwert T, et al. 3,4,6-Tri-O-acetyl-2-deoxy-2-[18F]fluoroglucopyranosyl phenylthiosulfonate: a thiol-reactive agent for the chemoselective 18F-glycosylation of peptides. Bioconjug Chem 2007;18:254–62. doi:10.1021/bc060340v.

    Article  PubMed  CAS  Google Scholar 

  5. Wuest F, Berndt M, Bergmann R, van den Hoff J, Pietzsch J. Synthesis and application of [18F]FDG-maleimidehexyloxime ([18F]FDG-MHO): a [18F]FDG-based prosthetic group for the chemoselective 18F-labeling of peptides and proteins. Bioconjug Chem 2008;19:1202–10. doi:10.1021/bc8000112.

    Article  PubMed  CAS  Google Scholar 

  6. Wasserman HH, Berger GD, Cho KR. Transamidation reactions using β-lactams. The synthesis of homaline. Tetrahedron Lett 1982;23:465–8. doi:10.1016/S0040-4039(00)86862-8.

    Article  CAS  Google Scholar 

  7. Wester HJ, Schoultz BW, Hultsch C, Henriksen G. Fast and repetitive in-capillary production of [18F]FDG. Eur J Nucl Med Mol Imaging 2009;36:653–8.

    Article  PubMed  CAS  Google Scholar 

  8. Tomatis R, Marastoni M, Balboni G, Guerrini R, Capasso A, Sorrentino L, et al. Synthesis and pharmacological activity of deltorphin and demorphin-related glycopeptides. J Med Chem 1997;40:2948–52. doi:10.1021/jm970119r.

    Article  PubMed  CAS  Google Scholar 

  9. Mizuma T, Sakai N, Awazu S. Na+-dependent transport of aminopeptidase-resistant sugar-coupled tripeptides in rat intestine. Biochem Biophys Res Commun 1994;203:1412–6. doi:10.1006/bbrc.1994.2342.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jürgen Wester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hultsch, C., Schottelius, M., Auernheimer, J. et al. 18F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK). Eur J Nucl Med Mol Imaging 36, 1469–1474 (2009). https://doi.org/10.1007/s00259-009-1122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1122-0

Keywords

Navigation