Skip to main content
Log in

Quantitative relationship between coronary calcium content and coronary flow reserve as assessed by integrated PET/CT imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the relationship between coronary artery calcium (CAC) and coronary vasodilator function.

Methods

We evaluated 136 patients without known coronary artery disease (CAD) undergoing vasodilator stress 82Rb PET/CT and CAC scoring who showed normal myocardial perfusion. The CAC score, resting and hyperemic myocardial blood flow (MBF), coronary flow reserve (CFR) and coronary vascular resistance were analyzed.

Results

Global and regional CAC scores showed significant but weak inverse correlations with hyperemic MBF (r=−0.31 and r=−0.26, p≤0.0002 respectively) and CFR (r=−0.28 and r=−0.2, p≤0.001 respectively). With increasing CAC score, there was a modest stepwise decline in CFR on a per-patient basis (1.8±0.5 vs 1.7±0.5 vs 1.5±0.4, p=0.048, with total CAC=0, 1–400 and >400, respectively) and on a per-vessel basis. In multivariable modeling only body mass index and CAC score were predictive of CFR.

Conclusion

In patients with an intermediate likelihood of, but without overt, CAD, there is a statistically significant but weak inverse correlation between CAC content and coronary vasodilator function. The strength of this association weakens after adjusting CAC scores for age, gender and coronary risk factors. This suggests that CAC and coronary vasodilator function provide biologically different information regarding atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rumberger JA, Schwartz RS, Simons DB, Sheedy PF 3rd, Edwards WD, Fitzpatrick LA. Relation of coronary calcium determined by electron beam computed tomography and lumen narrowing determined by autopsy. Am J Cardiol 1994;73:1169–73. doi: 10.1016/0002-9149(94)90176-7.

    Article  PubMed  CAS  Google Scholar 

  2. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995;92:2157–62.

    PubMed  CAS  Google Scholar 

  3. Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R. Pathophysiology of calcium deposition in coronary arteries. Herz 2001;26:239–44. doi: 10.1007/PL00002026.

    Article  PubMed  CAS  Google Scholar 

  4. Greenland P, Bonow RO, Brundage BH, Budoff MJ, Eisenberg MJ, Grundy SM, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol 2007;49:378–402. doi: 10.1016/j.jacc.2006.10.001.

    Article  PubMed  Google Scholar 

  5. Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol 2005;46:158–65. doi: 10.1016/j.jacc.2005.02.088.

    Article  PubMed  CAS  Google Scholar 

  6. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 2007;49:1860–70. doi: 10.1016/j.jacc.2006.10.079.

    Article  PubMed  Google Scholar 

  7. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 2004;291:210–5. doi: 10.1001/jama.291.2.210.

    Article  PubMed  CAS  Google Scholar 

  8. Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O’Malley PG. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol 2005;46:807–14. doi: 10.1016/j.jacc.2005.05.049.

    Article  PubMed  CAS  Google Scholar 

  9. Vliegenthart R, Oudkerk M, Hofman A, Oei HH, van Dijck W, van Rooij FJ, et al. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation 2005;112:572–7. doi: 10.1161/CIRCULATIONAHA.104.488916.

    Article  PubMed  Google Scholar 

  10. Huang PH, Chen LC, Leu HB, Ding PY, Chen JW, Wu TC, et al. Enhanced coronary calcification determined by electron beam CT is strongly related to endothelial dysfunction in patients with suspected coronary artery disease. Chest 2005;128:810–5. doi: 10.1378/chest.128.2.810.

    Article  PubMed  Google Scholar 

  11. Pryor DB, Shaw L, McCants CB, Lee KL, Mark DB, Harrell FE Jr, et al. Value of the history and physical in identifying patients at increased risk for coronary artery disease. Ann Intern Med 1993;118:81–90.

    PubMed  CAS  Google Scholar 

  12. El Fakhri G, Sitek A, Guerin B, Kijewski MF, Di Carli MF, Moore SC. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med 2005;46:1264–71.

    PubMed  CAS  Google Scholar 

  13. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–42. doi: 10.1161/hc0402.102975.

    Article  PubMed  Google Scholar 

  14. Herrero P, Markham J, Shelton ME, Bergmann SR. Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography. Circ Res 1992;70:496–507.

    PubMed  CAS  Google Scholar 

  15. Marshall RC, Taylor SE, Powers-Risius P, Reutter BW, Kuruc A, Coxson PG, et al. Kinetic analysis of rubidium and thallium as deposited myocardial blood flow tracers in isolated rabbit heart. Am J Physiol 1997;272:H1480–H1490.

    PubMed  CAS  Google Scholar 

  16. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827–32.

    Article  PubMed  CAS  Google Scholar 

  17. Hoff JA, Chomka EV, Krainik AJ, Daviglus M, Rich S, Kondos GT. Age and gender distributions of coronary artery calcium detected by electron beam tomography in 35,246 adults. Am J Cardiol 2001;87:1335–9. doi: 10.1016/S0002-9149(01)01548-X.

    Article  PubMed  CAS  Google Scholar 

  18. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 2005;46:75–88.

    PubMed  Google Scholar 

  19. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–71.

    PubMed  CAS  Google Scholar 

  20. Campisi R, Di Carli MF. Assessment of coronary flow reserve and microcirculation: a clinical perspective. J Nucl Cardiol 2004;11:3–11. doi: 10.1016/j.nuclcard.2003.11.003.

    Article  PubMed  Google Scholar 

  21. Wang L, Jerosch-Herold M, Jacobs DR Jr, Shahar E, Detrano R, Folsom AR. Coronary artery calcification and myocardial perfusion in asymptomatic adults: the MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2006;48:1018–26. doi: 10.1016/j.jacc.2006.04.089.

    Article  PubMed  CAS  Google Scholar 

  22. Pirich C, Leber A, Knez A, Bengel FM, Nekolla SG, Haberl R, et al. Relation of coronary vasoreactivity and coronary calcification in asymptomatic subjects with a family history of premature coronary artery disease. Eur J Nucl Med Mol Imaging 2004;31:663–70. doi: 10.1007/s00259-003-1426-4.

    Article  PubMed  Google Scholar 

  23. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24–33. doi: 10.1016/j.nuclcard.2005.12.004.

    Article  PubMed  Google Scholar 

  24. Hachamovitch R, Di Carli MF. Methods and limitations of assessing new noninvasive tests: part I: Anatomy-based validation of noninvasive testing. Circulation 2008;117:2684–90. doi: 10.1161/CIRCULATIONAHA.107.708586.

    Article  PubMed  Google Scholar 

  25. Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 2007;49:1052–8. doi: 10.1016/j.jacc.2006.12.015.

    Article  PubMed  CAS  Google Scholar 

  26. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation 2007;115:1464–80. doi: 10.1161/CIRCULATIONAHA.106.629808.

    Article  PubMed  Google Scholar 

  27. Marwick TH, Shan K, Patel S, Go RT, Lauer MS. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 1997;80:865–870. doi: 10.1016/S0002-9149(97)00537-7.

    Article  PubMed  CAS  Google Scholar 

  28. Yoshinaga K, Chow BJ, Williams K, Chen L, deKemp RA, Garrard L, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 2006;48:1029–39. doi: 10.1016/j.jacc.2006.06.025.

    Article  PubMed  Google Scholar 

  29. Dorbala S, Hachamovitch R, Curillova Z, Kwong R, Di Carli M. Incremental prognostic value of left ventricular ejection fraction assessment over myocardial perfusion imaging: a rubidium-82 positron emission tomography/computed tomography study (abstract). J Am Coll Cardiol 2007;49:109A.

    Article  CAS  Google Scholar 

  30. Dorbala S, Hachamovitch R, Kwong R, Curillova Z, Di Carli M. Incremental prognostic value of rubidium-82 myocardial perfusion positron emission tomography-computed tomography imaging in patients with known or suspected coronary artery disease (abstract). J Am Coll Cardiol 2007;49:109A. doi: 0.1016/j.jacc.2006.10.040.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Jon Hainer for his technical support on this project.

Conflicts of Interest

Sharmila Dorbala:

Speakers’ bureau: Bracco.

Speaking honoraria: GE Healthcare.

Marcelo F. Di Carli:

Research grants: Bracco, Astellas, GE Healthcare, Siemens, BMS Imaging.

Advisory boards: Bracco, BMS, GE Healthcare, Astellas.

Speaking honoraria: Bracco, GE Healthcare, Astellas.

Georges El Fakhri:

National Institutes of Health grant RO1 EB005876 funded part of the Generalized Factor Analysis of the Dynamic Sequences software development.

Zelmira Curillova, Bettina Yaman, Raymond Y. Kwong, Arkadius Sitek, Constantinos Anagnostopoulos:

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo F. Di Carli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curillova, Z., Yaman, B.F., Dorbala, S. et al. Quantitative relationship between coronary calcium content and coronary flow reserve as assessed by integrated PET/CT imaging. Eur J Nucl Med Mol Imaging 36, 1603–1610 (2009). https://doi.org/10.1007/s00259-009-1121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1121-1

Keywords

Navigation