Skip to main content

Advertisement

Log in

Effects of medial temporal lobe degeneration on brain perfusion in amnestic MCI of AD type: deafferentation and functional compensation?

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Cortical atrophy is correlated with the progression of neuropathological lesions within the medial temporal lobes (MTL) in Alzheimer’s disease (AD). Our aim was to determine which local and remote functional changes result from MTL volume loss at the predementia stage.

Methods

We studied the relationship between entorhinal and hippocampal MR volumes and whole-brain SPECT perfusion via a voxel-based correlative analysis in 19 patients with amnestic mild cognitive impairment with a memory profile suggestive of early AD.

Results

Right MTL volumes were positively correlated with remote posterior perfusion of the posterior cingulate cortex, and negatively correlated with remote anterior perfusion of the right medial and dorsolateral prefrontal cortex. There was no local correlation between volumes and perfusion within the MTL.

Conclusion

These findings provide further insight into functional changes that result from MTL volume loss during the predementia stage of AD. The positive correlation between MTL volumes and posterior cingulate perfusion may reflect the deafferentation of a temporocingulate network due to mediotemporal degeneration. The paradoxical negative correlation between MTL volumes and prefrontal perfusion may result from recruitment of an alternative anterior temporofrontal network. It remains to be investigated how the “net sum” of this perfusion modulation affects memory and other cognitive domains through a possible compensatory perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu Y, Jack CR Jr, O’Brien PC, Kokmen E, Smith GE, Ivnik RJ, et al. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 2000;54:1760–77.

    PubMed  CAS  Google Scholar 

  2. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82:239–59.

    Article  CAS  Google Scholar 

  3. Delacourte A, David JP, Sergeant N, Buée L, Wattez A, Vermersch P, et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 1999;52:1158–65.

    PubMed  CAS  Google Scholar 

  4. Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Morie E. Paradoxical hippocampus perfusion in mild-to-moderate Alzheimer’s disease. J Nucl Med 1998;39:293–8.

    PubMed  CAS  Google Scholar 

  5. Chételat G, Desgranges B, Landeau B, Mézenge F, Poline JB, de la Sayette V, et al. Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain 2008;131:60–71.

    Article  PubMed  Google Scholar 

  6. Chetelat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease. Neurology 2003;60:1374–7.

    PubMed  CAS  Google Scholar 

  7. Nestor PJ, Fryer TD, Ikeda M, Hodges JR. Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer’s disease). Eur J Neurosci 2003;18:2663–7.

    Article  PubMed  CAS  Google Scholar 

  8. Huang C, Wahlund LO, Svensson L, Winblad B, Julin P. Cingulate cortex hypoperfusion predicts Alzheimer’s disease in mild cognitive impairment. BMC Neurol 2002;2:9.

    Article  PubMed  Google Scholar 

  9. Matsuda H, Kitayama N, Ohnishi T, Asada T, Nakano S, Sakamoto S, et al. Longitudinal evaluation of both morphologic and functional changes in the same individuals with Alzheimer’s disease. J Nucl Med 2002;43:304–11.

    PubMed  Google Scholar 

  10. Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 2005;64:1860–7.

    Article  PubMed  CAS  Google Scholar 

  11. Scheff SW, Sparks L, Price DA. Quantitative assessment of synaptic density in the entorhinal cortex in Alzheimer’s disease. Ann Neurol 1993;34:356–61.

    Article  PubMed  CAS  Google Scholar 

  12. Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005;65:404–11.

    Article  PubMed  CAS  Google Scholar 

  13. Jobst KA, Smith AD, Barker CS, Wear A, King EM, Smith A, et al. Association of atrophy of the medial temporal lobe with reduced blood flow in the posterior parietotemporal cortex in patients with a clinical and pathological diagnosis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1992;55:190–4.

    Article  PubMed  CAS  Google Scholar 

  14. Yamaguchi S, Meguro K, Itoh M, Hayasaka C, Shimada M, Yamazaki H, et al. Decreased cortical glucose metabolism correlates with hippocampal atrophy in Alzheimer’s disease as shown by MRI and PET. J Neurol Neurosurg Psychiatry 1997;62:596–600.

    Article  PubMed  CAS  Google Scholar 

  15. Meguro K, LeMestric C, Landeau B, Desgranges B, Eustache F, Baron JC. Relations between hypometabolism in the posterior association neocortex and hippocampal atrophy in Alzheimer’s disease: a PET/MRI correlative study. J Neurol Neurosurg Psychiatry 2001;71:315–21.

    Article  PubMed  CAS  Google Scholar 

  16. Villain N, Desgranges B, Viader F, de la Sayette V, Mézenge F, Landeau B, et al. Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s disease. J Neurosci 2008;28:6174–81.

    Article  PubMed  CAS  Google Scholar 

  17. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303–8.

    Article  PubMed  CAS  Google Scholar 

  18. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734–46.

    Article  PubMed  Google Scholar 

  19. Sarazin M, Berr C, De Rotrou J, Fabrigoule C, Pasquier F, Legrain S, et al. Amnestic syndrome of the medial temporal type identifies prodromal AD: a longitudinal study. Neurology 2007;69:1859–67.

    Article  PubMed  CAS  Google Scholar 

  20. Grober E, Buschke H, Crystal H, Bang S, Dresner R. Screening for dementia by memory testing. Neurology 1988;38:900–3.

    PubMed  CAS  Google Scholar 

  21. Barbeau E, Didic M, Tramoni E, Felician O, Joubert S, Sontheimer A, et al. Evaluation of visual recognition memory in MCI patients. Neurology 2004;62:1317–22.

    PubMed  CAS  Google Scholar 

  22. Guedj E, Barbeau EJ, Didic M, Felician O, de Laforte C, Ceccaldi M, et al. Identification of subgroups in amnestic mild cognitive impairment. Neurology 2006;67:356–8.

    Article  PubMed  CAS  Google Scholar 

  23. Eustache F, Desgranges B, Giffard B, de la Sayette V, Baron JC. Entorhinal cortex disruption causes memory deficit in early Alzheimer’s disease as shown by PET. Neuroreport 2001;12:683–5.

    Article  PubMed  CAS  Google Scholar 

  24. Duvernoy HM. The human brain: surface, three-dimensional sectional anatomy with MRI, and blood supply. New York: Springer; 1998.

    Google Scholar 

  25. Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, et al. MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 1998;19:659–71.

    PubMed  CAS  Google Scholar 

  26. Barbeau E, Sontheimer A, Joubert S, Didic M, Felician O, Tramoni E, et al. The human perirhinal cortex. Rev Neurol (Paris) 2004;160:401–11.

    CAS  Google Scholar 

  27. Eritaia J, Wood SJ, Stuart GW, Bridle N, Dudgeon P, Maruff P, et al. An optimized method for estimating intracranial volume from magnetic resonance images. Magn Reson Med 2000;44:973–7.

    Article  PubMed  CAS  Google Scholar 

  28. Chetelat G, Desgranges B, De La Sayette V, Viader F, Eustache F, Baron JC. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. Neuroreport 2002;13:1939–43.

    Article  PubMed  Google Scholar 

  29. de Leon MJ, Convit A, DeSanti S, Bobinski M, George AE, Wisniewski HM, et al. Contribution of structural neuroimaging to the early diagnosis of Alzheimer’s disease. Int Psychogeriatr 1997;9:183–90.

    Article  PubMed  Google Scholar 

  30. Chetelat G, Baron JC. Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 2003;18:525–41.

    Article  PubMed  Google Scholar 

  31. Teipel SJ, Flatz WH, Heinsen H, Bokde AL, Schoenberg SO, Stöckel S, et al. Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain 2005;128:2626–44.

    Article  PubMed  Google Scholar 

  32. Frisoni GB, Testa C, Zorzan A, Sabattoli F, Beltramello A, Soininen H, et al. Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry. J Neurol Neurosurg Psychiatry 2002;73:657–64.

    Article  PubMed  CAS  Google Scholar 

  33. Mevel K, Desgranges B, Baron JC, Landeau B, De la Sayette V, Viader F, et al. Detecting hippocampal hypometabolism in mild cognitive impairment using automatic voxel-based approaches. Neuroimage 2007;37:18–25.

    Article  PubMed  Google Scholar 

  34. DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002;51:145–55.

    Article  PubMed  CAS  Google Scholar 

  35. Truchot L, Costes SN, Zimmer L, Laurent B, Le Bars D, Thomas-Antérion C, et al. Up-regulation of hippocampal serotonin metabolism in mild cognitive impairment. Neurology 2007;69:1012–7.

    Article  PubMed  CAS  Google Scholar 

  36. Alsop DC, Casement M, de Bazelaire C, Fong T, Press DZ. Hippocampal hyperperfusion in Alzheimer’s disease. Neuroimage 2008;42:1267–74.

    Article  PubMed  Google Scholar 

  37. Karas GB, Scheltens P, Rombouts SA, Visser PJ, van Schijndel RA, Fox NC, et al. Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 2004;23:708–16.

    Article  PubMed  CAS  Google Scholar 

  38. Barbeau EJ, Ranjeva JP, Didic M, Confort-Gouny S, Felician O, Soulier E, et al. Profile of memory impairment and gray matter loss in amnestic mild cognitive impairment. Neuropsychologia 2008;46:1009–19.

    Article  PubMed  CAS  Google Scholar 

  39. De Carli C, Atack JR, Ball MJ. Post mortem regional neurofibrillary tangle densities but not senile plaque densities are related to regional cerebral rates for glucose during life in Alzheimer’s disease patients. Neurodegeneration 1992;1:113–21.

    Google Scholar 

  40. Hayashi T, Fukuyama H, Katsumi Y, Hanakawa T, Nagahama Y, Yamauchi H, et al. Cerebral glucose metabolism in unilateral entorhinal cortex-lesioned rats: an animal PET study. Neuroreport 1999;10:2113–8.

    Article  PubMed  CAS  Google Scholar 

  41. Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer’s disease. Brain 1999;122:1519–31.

    Article  PubMed  Google Scholar 

  42. Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 2006;31:496–504.

    Article  PubMed  Google Scholar 

  43. Ranganath C, Heller A, Cohen MX, Brozinsky CJ, Rissman J. Functional connectivity with the hippocampus during successful memory formation. Hippocampus 2005;15:997–1005.

    Article  PubMed  Google Scholar 

  44. Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry 1937;38:725–43

    Google Scholar 

  45. Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 1999;22:425–89.

    PubMed  CAS  Google Scholar 

  46. Desgranges B, Baron JC, de la Sayette V, Petit-Taboué MC, Benali K, Landeau B, et al. The neural substrates of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization. Brain 1998;121:611–31.

    Article  PubMed  Google Scholar 

  47. McDonald CR, Crosson B, Valenstein E, Bowers D. Verbal encoding deficits in a patient with a left retrosplenial lesion. Neurocase 2001;7:407–17.

    Article  PubMed  CAS  Google Scholar 

  48. Cabeza R, Nyberg L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 2000;12:1–47.

    Article  PubMed  CAS  Google Scholar 

  49. Berthoz A. Parietal and hippocampal contribution to topokinetic and topographic memory. Philos Trans R Soc Lond B Biol Sci 1997;352:1437–48.

    Article  PubMed  CAS  Google Scholar 

  50. Maddock RJ, Garrett AS, Buonocore MH. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 2001;104:667–76.

    Article  PubMed  CAS  Google Scholar 

  51. Backman L, Andersson JL, Nyberg L, Winblad B, Nordberg A, Almkvist O. Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology 1999;52:1861–70.

    PubMed  CAS  Google Scholar 

  52. Nguyen DK, Botez MI. Diaschisis and neurobehavior. Can J Neurol Sci 1998;25:5–12.

    PubMed  CAS  Google Scholar 

  53. Huang C, Wahlund LO, Almkvist O, Elehu D, Svensson L, Jonsson T, et al. Voxel- and VOI-based analysis of SPECT CBF in relation to clinical and psychological heterogeneity of mild cognitive impairment. Neuroimage 2003;19:1137–44.

    Article  PubMed  CAS  Google Scholar 

  54. Heun R, Freymann K, Erb M, Leube DT, Jessen F, Kircher TT, et al. Mild cognitive impairment (MCI) and actual retrieval performance affect cerebral activation in the elderly. Neurobiol Aging 2007;28:404–13.

    Article  PubMed  Google Scholar 

  55. Garrido GE, Furuie SS, Buchpiguel CA, Bottino CM, Almeida OP, Cid CG, et al. Relation between medial temporal atrophy and functional brain activity during memory processing in Alzheimer’s disease: a combined MRI and SPECT study. J Neurol Neurosurg Psychiatry 2002;73:508–16.

    Article  PubMed  CAS  Google Scholar 

  56. Remy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer’s disease: a combined structural and functional MRI study. Neuroimage 2005;25:253–66.

    Article  PubMed  Google Scholar 

  57. Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 2005;64:501–8.

    PubMed  Google Scholar 

  58. Backman L, Small JB, Fratiglioni L. Stability of the preclinical episodic memory deficit in Alzheimer’s disease. Brain 2001;124:96–102.

    Article  PubMed  CAS  Google Scholar 

  59. Moscovitch M. Memory and working-with-memory: a component process model based on modules and central systems. J Cogn Neurosci 1992;4:257–67.

    Article  Google Scholar 

  60. Mosconi L, Pupi A, De Cristofaro MT, Fayyaz M, Sorbi S, Herholz K. Functional interactions of the entorhinal cortex: an 18F-FDG PET study on normal aging and Alzheimer’s disease. J Nucl Med 2004;45:382–92.

    PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by ‘Assistance Publique des Hôpitaux de Marseille’ (AP-HM) PHRC 2001/54 and France Alzheimer.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Guedj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guedj, E., Barbeau, E.J., Didic, M. et al. Effects of medial temporal lobe degeneration on brain perfusion in amnestic MCI of AD type: deafferentation and functional compensation?. Eur J Nucl Med Mol Imaging 36, 1101–1112 (2009). https://doi.org/10.1007/s00259-009-1060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1060-x

Keywords

Navigation