Skip to main content

Advertisement

Log in

Evaluation of a novel radiofolate in tumour-bearing mice: promising prospects for folate-based radionuclide therapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Folate-based radiopharmaceuticals have the potential to be used for imaging and therapy of tumours positive for the folate receptor (FR). We describe the in vitro and in vivo evaluation of a DOTA–folate conjugate.

Methods

Radiolabelling of the DOTA-folate was carried out via standard procedures using 111InCl3 and 177LuCl3, respectively. The distribution coefficient (log D) was determined in octanol/PBS (pH 7.4). Tissue distribution was investigated in nude mice bearing KB tumour xenografts at different time points after administration of 111In-DOTA-folate (radiofolate 1) or 177Lu-DOTA-folate (radiofolate 2) (1 MBq, 1 nmol per mouse). Pemetrexed (PMX, 400 μg) was injected 1 h prior to the radiofolate in order to reduce renal uptake. Images were acquired with a SPECT/CT camera 24 h after injection of the radiofolate (40–50 MBq, 3 nmol per mouse).

Results

The hydrophilic character of the DOTA-folate was represented by a low log D value (radiofolate 1 −4.21±0.11). In vivo, maximal tumour uptake was found 4 h after injection (radiofolate 1 5.80±0.55% ID/g; radiofolate 2 7.51±1.25% ID/g). In FR-positive kidneys there was considerable accumulation of the radiofolates (radiofolate 1 55.88±3.91% ID/g; radiofolate 2 57.22±11.05% ID/g; 4 h after injection). However, renal uptake was reduced by preinjection of PMX (radiofolate 1 9.52±1.07% ID/g; radiofolate 2 13.43±0.54% ID/g; 4 h after injection) whereas the tumour uptake was retained (radiofolate 1 6.32±0.41% ID/g; radiofolate 2 8.99±0.43% ID/g; 4 h after injection). SPECT/CT images clearly confirmed favourable tissue distribution of the novel radiofolates and the positive effect of PMX.

Conclusion

The preliminary requirements for the therapeutic use of the novel DOTA-folate are met by its favourable tissue distribution that can be ascribed to its hydrophilic properties and combined administration with PMX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weitman SD, Lark RH, Coney LR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52:3396–401.

    PubMed  CAS  Google Scholar 

  2. Garin-Chesa P, Campbell I, Saigo PE, et al. Trophoblast and ovarian cancer antigen LK26 – sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol 1993;142:557–67.

    PubMed  CAS  Google Scholar 

  3. Toffoli G, Cernigoi C, Russo A, et al. Overexpression of folate binding protein in ovarian cancers. Int J Cancer 1997;74:193–8.

    Article  PubMed  CAS  Google Scholar 

  4. Parker N, Turk MJ, Westrick E, et al. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 2005;338:284–93.

    Article  PubMed  CAS  Google Scholar 

  5. Paulos CM, Turk MJ, Breur GJ, Low PS. Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Adv Drug Deliv Rev 2004;56:1205–17.

    Article  PubMed  CAS  Google Scholar 

  6. Guo WJ, Hinkle GH, Lee RJ. 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 1999;40:1563–9.

    PubMed  CAS  Google Scholar 

  7. Mathias CJ, Hubers D, Low PS, Green MA. Synthesis of [99mTc]DTPA-folate and its evaluation as a folate-receptor-targeted radiopharmaceutical. Bioconjug Chem 2000;11:253–7.

    Article  PubMed  CAS  Google Scholar 

  8. Leamon CP, Parker MA, Vlahov IR, et al. Synthesis and biological evaluation of EC20: a new folate-derived, 99mTc-based radiopharmaceutical. Bioconjug Chem 2002;13:1200–10.

    Article  PubMed  CAS  Google Scholar 

  9. Reddy JA, Xu LC, Parker N, Vetzel M, Leamon CP. Preclinical evaluation of 99mTc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 2004;45:857–66.

    PubMed  CAS  Google Scholar 

  10. Müller C, Hohn A, Schubiger PA, Schibli R. Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting. Eur J Nucl Med Mol Imaging 2006;33:1007–16.

    Article  PubMed  Google Scholar 

  11. Müller C, Schubiger PA, Schibli R. Synthesis and in vitro/in vivo evaluation of novel 99mTc(CO)3-folates. Bioconjug Chem 2006;17:797–806.

    Article  PubMed  Google Scholar 

  12. Siegel BA, Dehdashti F, Mutch DG, et al. Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med 2003;44:700–7.

    PubMed  CAS  Google Scholar 

  13. Mathias CJ, Wang S, Low PS, Waters DJ, Green MA. Receptor-mediated targeting of 67Ga-deferoxamine-folate to folate-receptor-positive human KB tumor xenografts. Nucl Med Biol 1999;26:23–5.

    Article  PubMed  CAS  Google Scholar 

  14. Mathias CJ, Lewis MR, Reichert DE, et al. Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl Med Biol 2003;30:725–31.

    Article  PubMed  CAS  Google Scholar 

  15. Bettio A, Honer M, Müller C, et al. Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. J Nucl Med 2006;47:1153–60.

    PubMed  CAS  Google Scholar 

  16. Ke CY, Mathias CJ, Green MA. The folate receptor as a molecular target for tumor-selective radionuclide delivery. Nucl Med Biol 2003;30:811–7.

    Article  PubMed  CAS  Google Scholar 

  17. Ke CY, Mathias CJ, Green MA. Folate-receptor-targeted radionuclide imaging agents. Adv Drug Deliv Rev 2004;56:1143–60.

    Article  PubMed  CAS  Google Scholar 

  18. Leamon CP, Reddy JA. Folate-targeted chemotherapy. Adv Drug Deliv Rev 2004;56:1127–41.

    Article  PubMed  CAS  Google Scholar 

  19. Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 2004;56:1177–92.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao XBB, Lee RJ. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv Drug Deliv Rev 2004;56:1193–204.

    Article  PubMed  CAS  Google Scholar 

  21. Lu Y, Low PS. Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J Control Release 2003;91:17–29.

    Article  PubMed  CAS  Google Scholar 

  22. Lu YJ, Sega E, Leamon CP, Low PS. Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv Drug Deliv Rev 2004;56:1161–76.

    Article  PubMed  CAS  Google Scholar 

  23. Leamon CP, Reddy JA, Vlahov IR, et al. Synthesis and biological evaluation of EC72: a new folate-targeted chemotherapeutic. Bioconjug Chem 2005;16:803–11.

    Article  PubMed  CAS  Google Scholar 

  24. Reddy JA, Westrick E, Santhapuram HK, et al. Folate receptor-specific antitumor activity of EC131, a folate-maytansinoid conjugate. Cancer Res 2007;67:6376–82.

    Article  PubMed  CAS  Google Scholar 

  25. Leamon CP, Reddy JA, Vlahov IR, et al. Synthesis and biological evaluation of EC140: a novel folate-targeted vinca alkaloid conjugate. Bioconjug Chem 2006;17:1226–32.

    Article  PubMed  CAS  Google Scholar 

  26. Reddy JA, Dorton R, Westrick E, et al. Preclinical evaluation of EC145, a folate-vinca alkaloid conjugate. Cancer Res 2007;67:4434–42.

    Article  PubMed  CAS  Google Scholar 

  27. Mathias CJ, Wang S, Waters DJ, et al. Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med 1998;39:1579–85.

    PubMed  CAS  Google Scholar 

  28. Goresky CA, Watanabe H, Johns DG. The renal excretion of folic acid. J Clin Invest 1963;42:1841–9

    Article  PubMed  CAS  Google Scholar 

  29. Holm J, Hansen SI, Hoiermadsen M, Bostad L. A high-affinity folate binding-protein in proximal tubule cells of human kidney. Kidney Int 1992;41:50–5.

    Article  PubMed  CAS  Google Scholar 

  30. McMartin KE, Morshed KM, Hazenmartin DJ, Sens DA. Folate transport and binding by cultured human proximal tubule cells. Am J Physiol 1992;263:F841–8.

    PubMed  CAS  Google Scholar 

  31. Birn H, Spiegelstein O, Christensen EI, Finnell RH. Renal tubular reabsorption of folate mediated by folate binding protein 1. J Am Soc Nephrol 2005;16:608–15.

    Article  PubMed  CAS  Google Scholar 

  32. Sandoval RM, Kennedy MD, Low PS, Molitoris BA. Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy. Am J Physiol Cell Physiol 2004;287:C517–26.

    Article  PubMed  CAS  Google Scholar 

  33. Müller C, Brühlmeier M, Schubiger AP, Schibli R. Effects of antifolate drugs on the cellular uptake of radiofolates in vitro and in vivo. J Nucl Med 2006;47:2057–64.

    PubMed  Google Scholar 

  34. Müller C, Schibli R, Krenning EP, de Jong M. Pemetrexed improves tumor selectivity of 111In-DTPA-folate in mice with folate receptor-positive ovarian cancer. J Nucl Med 2008;49:623–9.

    Article  PubMed  Google Scholar 

  35. Hanauske AR, Chen V, Paoletti P, Niyikiza C. Pemetrexed disodium: a novel antifolate clinically active against multiple solid tumors. Oncologist 2001;6:363–73.

    Article  PubMed  CAS  Google Scholar 

  36. Paz-Ares L, Bezares S, Tabernero JM, Castellanos D, Cortes-Funes H. Review of a promising new agent – pemetrexed disodium. Cancer 2003;97:2056–63.

    Article  PubMed  CAS  Google Scholar 

  37. Müller C, Schubiger PA, Schibli R. Isostructural folate conjugates radiolabeled with the matched pair 99mTc/188Re: a potential strategy for diagnosis and therapy of folate receptor-positive tumors. Nucl Med Biol 2007;34:595–601.

    Article  PubMed  Google Scholar 

  38. Müller C, Schibli R, Forrer F, Krenning EP, de Jong M. Dose-dependent effects of (anti)folate preinjection on 99mTc-radiofolate uptake in tumors and kidneys. Nucl Med Biol 2007;34:603–8.

    Article  PubMed  Google Scholar 

  39. Kwekkeboom DJ, Bakker WH, Kooij PP, et al. [177Lu-DOTA0Tyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med 2001;28:1319–25.

    Article  PubMed  CAS  Google Scholar 

  40. Teunissen JJ, Kwekkeboom DJ, Krenning EP. Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0Tyr3]octreotate. J Clin Oncol 2004;22:2724–9.

    Article  PubMed  CAS  Google Scholar 

  41. van Essen M, Krenning EP, Kooij PP, et al. Effects of therapy with [177Lu-DOTA0Tyr3]octreotate in patients with paraganglioma, meningioma, small cell lung carcinoma, and melanoma. J Nucl Med 2006;47:1599–606.

    PubMed  Google Scholar 

  42. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 2001;40:2004–21.

    Article  PubMed  CAS  Google Scholar 

  43. Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov Today 2003;8:1128–37.

    Article  PubMed  CAS  Google Scholar 

  44. Knör S, Modlinger A, Poethko T, et al. Synthesis of novel 1,4,7,10-tetraazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) derivatives for chemoselective attachment to unprotected polyfunctionalized compounds. Chemistry 2007;13:6082–90.

    Article  PubMed  Google Scholar 

  45. Dijkgraaf I, Rijnders AY, Soede A, et al. Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org Biomol Chem 2007;5:935–44.

    Article  PubMed  CAS  Google Scholar 

  46. Mindt TL, Muller C, Melis M, de Jong M, Schibli R. “Click-to-chelate”: in vitro and in vivo comparison of a 99mTc(CO)3-labeled Nt-histidine folate derivative with its isostructural, clicked 1,2,3-triazole analogue. Bioconjug Chem 2008;19:1689–95.

    Article  PubMed  CAS  Google Scholar 

  47. Rennen HJJM, van Eerd JE, Oyen WJG, et al. Effects of coligand variation on the in vivo characteristics of Tc-99m-labeled interleukin-8 in detection of infection. Bioconjug Chem 2002;13:370–7.

    Article  PubMed  CAS  Google Scholar 

  48. Dixon KH, Mulligan T, Chung KN, Elwood PC, Cowan KH. Effects of folate receptor expression following stable transfection into wild type and methotrexate transport-deficient ZR-75-1 human breast cancer cells. J Biol Chem 1992;267:24140–7.

    PubMed  CAS  Google Scholar 

  49. Ladino CA, Chari RVJ, Bourret LA, Kedersha NL, Goldmacher VS. Folate-maytansinoids: target-selective drugs of low molecular weight. Int J Cancer 1997;73:859–64.

    Article  PubMed  CAS  Google Scholar 

  50. Mathias CJ, Wang S, Lee RJ, et al. Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med 1996;37:1003–8.

    PubMed  CAS  Google Scholar 

  51. Forrer F, Valkema R, Bernard B, et al. In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging 2006;33:1214–7.

    Article  PubMed  CAS  Google Scholar 

  52. Müller C, Forrer F, Schibli R, Krenning EP, de Jong M. SPECT study of folate receptor-positive malignant and normal tissues in mice using a novel 99mTc-radiofolate. J Nucl Med 2008;49:310–7.

    Article  PubMed  Google Scholar 

  53. Hammond PJ, Wade AF, Gwilliam ME, et al. Amino acid infusion blocks renal tubular uptake of an indium-labelled somatostatin analogue. Br J Cancer 1993;67:1437–9.

    PubMed  CAS  Google Scholar 

  54. Akizawa H, Uehara T, Arano Y. Renal uptake and metabolism of radiopharmaceuticals derived from peptides and proteins. Adv Drug Deliv Rev 2008;60:1319–28.

    Article  PubMed  CAS  Google Scholar 

  55. Müller C, Forrer F, Bernard BF, et al. Diagnostic versus therapeutic doses of [177Lu-DOTA0Tyr3]-octreotate: uptake and dosimetry in somatostatin receptor-positive tumors and normal organs. Cancer Biother Radiopharm 2007;22:151–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Christian Lackas and Dr. Nils Schramm for support with the NanoSPECT/CT (Bioscan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, C., Mindt, T.L., de Jong, M. et al. Evaluation of a novel radiofolate in tumour-bearing mice: promising prospects for folate-based radionuclide therapy. Eur J Nucl Med Mol Imaging 36, 938–946 (2009). https://doi.org/10.1007/s00259-008-1058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-1058-9

Keywords

Navigation