Skip to main content

Advertisement

Log in

Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding Affibody molecules

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

HER2 is a transmembrane tyrosine kinase, which is overexpressed in a number of carcinomas. The Affibody molecule ZHER2:342 is a small (7 kDa) affinity protein binding to HER2 with an affinity of 22 pM. The goal of this study was to evaluate the use of ((4-hydroxyphenyl)ethyl)maleimide (HPEM) for radioiodination of ZHER2:342 and to compare the targeting properties of monomeric and dimeric forms of ZHER2:342.

Methods

The biodistribution of different radioiodinated derivatives of ZHER2:342 was studied in BALB/C nu/nu mice bearing HER2-expressing SKOV-3 xenografts. Biodistributions of 125I-PIB-ZHER2:342 and site-specifically labelled 125I-HPEM-ZHER2:342-C were compared. Biodistributions of monomeric 131I-HPEM-ZHER2:342-C and dimeric 125I-HPEM-(ZHER2:342)2-C were evaluated using a paired-label method.

Results

125I-HPEM-ZHER2:342-C had the same level of tumour accumulation as 125I-PIB-ZHER2:342, but fourfold lower renal retention of radioactivity. The monomeric form of ZHER2:342 provided better tumour targeting than the dimeric form.

Conclusion

Favourable biodistribution of 131I-HPEM-ZHER2:342-C makes it a promising candidate for radionuclide therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Masood S, Bui MM. Assessment of Her-2/neu overexpression in primary breast cancers and their metastatic lesions: an immunohistochemical study. Ann Clin Lab Sci 2000;30:259–65.

    PubMed  CAS  Google Scholar 

  2. Simon R, Nocito A, Hubscher T, Bucher C, Torhorst J, Schraml P, et al. Patterns of her-2/neu amplification and overexpression in primary and metastatic breast cancer. J Natl Cancer Inst 2001;93:1141–6.

    Article  PubMed  CAS  Google Scholar 

  3. Carlsson J, Nordgren H, Sjostrom J, Wester K, Villman K, Bengtsson NO, et al. HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer 2004;90:2344–8.

    PubMed  CAS  Google Scholar 

  4. Ross JS, Fletcher JA, Linette GP, Stec J, Clark E, Ayers M, et al. The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 2003;8:307–25.

    Article  PubMed  CAS  Google Scholar 

  5. Marmor MD, Skaria KB, Yarden Y. Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys 2004;58:903–13.

    PubMed  CAS  Google Scholar 

  6. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783–92.

    Article  PubMed  CAS  Google Scholar 

  7. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005;353:1673–84.

    Article  PubMed  CAS  Google Scholar 

  8. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005;353:1659–72.

    Article  PubMed  CAS  Google Scholar 

  9. Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene 2007;26:3637–43.

    Article  PubMed  CAS  Google Scholar 

  10. De Santes K, Slamon D, Anderson SK, Shepard M, Fendly B, Maneval D, et al. Radiolabeled antibody targeting of the HER-2/neu oncoprotein. Cancer Res 1992;52:1916–23.

    PubMed  Google Scholar 

  11. Smellie WJ, Dean CJ, Sacks NP, Zalutsky MR, Garg PK, Carnochan P, et al. Radioimmunotherapy of breast cancer xenografts with monoclonal antibody ICR12 against c-erbB2 p185: comparison of iodogen and N-succinimidyl 4-methyl-3-(tri-n-butylstannyl)benzoate radioiodination methods. Cancer Res 1995;55:5842s–6s.

    PubMed  CAS  Google Scholar 

  12. Blend MJ, Stastny JJ, Swanson SM, Brechbiel MW. Labeling anti-HER2/neu monoclonal antibodies with 111In and 90Y using a bifunctional DTPA chelating agent. Cancer Biother Radiopharm 2003;18:355–63.

    Article  PubMed  CAS  Google Scholar 

  13. Milenic DE, Garmestani K, Brady ED, Albert PS, Ma D, Abdulla A, et al. Targeting of HER2 antigen for the treatment of disseminated peritoneal disease. Clin Cancer Res 2004;10:7834–41.

    Article  PubMed  CAS  Google Scholar 

  14. Milenic DE, Garmestani K, Brady ED, Albert PS, Ma D, Abdulla A, et al. Alpha-particle radioimmunotherapy of disseminated peritoneal disease using a 212Pb-labeled radioimmunoconjugate targeting HER2. Cancer Biother Radiopharm 2005;20:557–68.

    Article  PubMed  CAS  Google Scholar 

  15. Persson MI, Gedda L, Jensen HJ, Lundqvist H, Malmström PU, Tolmachev V. Astatinated trastuzumab, a putative agent for radionuclide immunotherapy of ErbB2-expressing tumours. Oncol Rep 2006;15:673–80.

    PubMed  CAS  Google Scholar 

  16. Tsai SW, Sun Y, Williams LE, Raubitschek AA, Wu AM, Shively JE. Biodistribution and radioimmunotherapy of human breast cancer xenografts with radiometal-labeled DOTA conjugated anti-HER2/neu antibody 4D5. Bioconjug Chem 2000;11:327–34.

    Article  PubMed  CAS  Google Scholar 

  17. Persson M, Gedda L, Lundqvist H, Tolmachev V, Nordgren H, Malmström PU, et al. [177Lu]pertuzumab: experimental therapy of HER-2-expressing xenografts. Cancer Res 2007;67:326–31.

    Article  PubMed  CAS  Google Scholar 

  18. Goldenberg DM. Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med 2002;43:693–713.

    PubMed  CAS  Google Scholar 

  19. Goldenberg DM. Advancing role of radiolabeled antibodies in the therapy of cancer. Cancer Immunol Immunother 2003;52:281–96.

    PubMed  CAS  Google Scholar 

  20. Kenanova V, Wu AM. Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv 2006;3:53–70.

    Article  PubMed  CAS  Google Scholar 

  21. Adams GP, Schier R, McCall AM, Crawford RS, Wolf EJ, Weiner LM, et al. Prolonged in vivo tumour retention of a human diabody targeting the extracellular domain of human HER2/neu. Br J Cancer 1998;77:1405–12.

    PubMed  CAS  Google Scholar 

  22. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001;61:4750–5.

    PubMed  CAS  Google Scholar 

  23. Adams GP, Shaller CC, Dadachova E, Simmons HH, Horak EM, Tesfaye A, et al. A single treatment of yttrium-90-labeled CHX-A″-C6.5 diabody inhibits the growth of established human tumor xenografts in immunodeficient mice. Cancer Res 2004;64:6200–6.

    Article  PubMed  CAS  Google Scholar 

  24. Olafsen T, Tan GJ, Cheung CW, Yazaki PJ, Park JM, Shively JE, et al. Characterization of engineered anti-p185HER-2 (scFv-CH3)2 antibody fragments (minibodies) for tumor targeting. Protein Eng Des Sel 2004;17:315–23.

    Article  PubMed  CAS  Google Scholar 

  25. Olafsen T, Kenanova VE, Sundaresan G, Anderson AL, Crow D, Yazaki PJ, et al. Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 2005;65:5907–16.

    Article  PubMed  CAS  Google Scholar 

  26. Nygren PA, Uhlén M. Scaffolds for engineering novel binding sites in proteins. Curr Opin Struct Biol 1997;7:463–9.

    Article  PubMed  CAS  Google Scholar 

  27. Nord K, Gunneriusson E, Ringdahl J, Ståhl S, Uhlén M, Nygren PA. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 1997;15:772–7.

    Article  PubMed  CAS  Google Scholar 

  28. Nygren PA. Alternative binding proteins: Affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J 2008;275:2668–76.

    Article  PubMed  CAS  Google Scholar 

  29. Nilsson FY, Tolmachev V. Affibody molecules: new protein domains for molecular imaging and targeted tumor therapy. Curr Opin Drug Discov Devel 2007;10:167–75.

    PubMed  CAS  Google Scholar 

  30. Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsén L. Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 2007;7:555–68.

    Article  PubMed  CAS  Google Scholar 

  31. Orlova A, Feldwisch J, Abrahmsén L, Tolmachev V. Update: affibody molecules for molecular imaging and therapy for cancer. Cancer Biother Radiopharm 2007;22:573–84.

    Article  PubMed  CAS  Google Scholar 

  32. Orlova A, Magnusson M, Eriksson T, Nilsson M, Larsson B, Höiden-Guthenberg I. Tumor imaging using a picomolar affinity HER2 binding Affibody molecule. Cancer Res 2006;66:4339–48.

    Article  PubMed  CAS  Google Scholar 

  33. Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandström M, et al. Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 2007;67:2178–86.

    Article  PubMed  CAS  Google Scholar 

  34. Orlova A, Rosik D, Sandstrom M, Lundqvist H, Einarsson L, Tolmachev V. Evaluation of [111/114mIn]CHX-A″-DTPA-ZHER2:342, an Affibody ligand conjugate for targeting of HER2-expressing malignant tumors. Q J Nucl Med Mol Imaging 2007;51:314–23.

    PubMed  CAS  Google Scholar 

  35. Tran T, Engfeldt T, Orlova A, Sandström M, Feldwisch J, Abrahmsén L, et al. 99mTc-maEEE-ZHER2:342, an Affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. Bioconjug Chem 2007;18:1956–64.

    Article  PubMed  CAS  Google Scholar 

  36. Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, et al. Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res 2007;67:2773–82.

    Article  PubMed  CAS  Google Scholar 

  37. Ahlgren S, Orlova A, Rosik D, Sandström M, Sjöberg A, Baastrup B, et al. Evaluation of maleimide derivative of DOTA for site-specific labeling of recombinant affibody molecules. Bioconjug Chem 2008;19:235–43.

    Article  PubMed  CAS  Google Scholar 

  38. Tolmachev V, Xu H, Wållberg H, Ahlgren S, Hjertman M, Sjöberg A, et al. Evaluation of a maleimido derivative of CHX-A″ DTPA for site-specific labeling of affibody molecules. Bioconjug Chem 2008;19:1579–87.

    Article  PubMed  CAS  Google Scholar 

  39. Wållberg H, Orlova A. Slow internalization of anti-HER2 synthetic affibody monomer 111In-DOTA-ZHER2:342-pep2: implications for development of labeled tracers. Cancer Biother Radiopharm 2008;23:435–42.

    Article  PubMed  Google Scholar 

  40. Kenanova V, Olafsen T, Williams LE, Ruel NH, Longmate J, Yazaki PJ, et al. Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy. Cancer Res 2007;67:718–26.

    Article  PubMed  CAS  Google Scholar 

  41. Mume E, Orlova A, Nilsson F, Larsson B, Nilsson AS, Sjöberg S, et al. Evaluation of (4-hydroxyphenyl)ethyl)maleimide for site-specific radiobromination of anti-HER2 affibody. Bioconjug Chem 2005;16:1547–55.

    Article  PubMed  CAS  Google Scholar 

  42. Nielsen UB, Adams GP, Weiner LM, Marks JD. Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res 2000;60:6434–40.

    PubMed  CAS  Google Scholar 

  43. Goel A, Baranowska-Kortylewicz J, Hinrichs SH, Wisecarver J, Pavlinkova G, Augustine S, et al. 99mTc-labeled divalent and tetravalent CC49 single-chain Fv’s: novel imaging agents for rapid in vivo localization of human colon carcinoma. J Nucl Med 2001;42:1519–27.

    PubMed  CAS  Google Scholar 

  44. Persson M, Tolmachev V, Andersson K, Gedda L, Sandstrom M, Carlsson J. [177Lu]pertuzumab: experimental studies on targeting of HER-2 positive tumour cells. Eur J Nucl Med Mol Imaging 2005;32:1457–62.

    Article  PubMed  CAS  Google Scholar 

  45. Tran T, Engfeldt T, Orlova A, Widstrom C, Bruskin A, Tolmachev V, et al. In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumor-targeting Affibody molecules. Bioconjug Chem 2007;18:549–58.

    Article  PubMed  CAS  Google Scholar 

  46. Ekblad T, Tran T, Orlova A, Widström C, Feldwisch J, Abrahmsen L, et al. Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake. Eur J Nucl Med Mol Imaging, 2008. doi:10.1007/s00259-008-0845-7.

  47. Engfeldt T, Tran T, Orlova A, Widström C, Feldwisch J, Abrahmsen L, et al. 99mTc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. Eur J Nucl Med Mol Imaging 2007;34:1843–53.

    Article  PubMed  CAS  Google Scholar 

  48. Tolmachev V, Nilsson FY, Widström C, Andersson K, Rosik D, Gedda L, et al. 111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J Nucl Med 2006;47:846–53.

    PubMed  CAS  Google Scholar 

  49. Cheng Z, De Jesus OP, Namavari M, De A, Levi J, Webster JM, et al. Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules. J Nucl Med 2008;49:804–13.

    Article  PubMed  CAS  Google Scholar 

  50. Kramer-Marek G, Kiesewetter DO, Martiniova L, Jagoda E, Lee SB, Capala J. [18F]FBEM-ZHER2:342-Affibody molecule – a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography. Eur J Nucl Med Mol Imaging 2008;35:1008–18.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from the Swedish Cancer Society (Cancerfonden).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Tolmachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolmachev, V., Mume, E., Sjöberg, S. et al. Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding Affibody molecules. Eur J Nucl Med Mol Imaging 36, 692–701 (2009). https://doi.org/10.1007/s00259-008-1003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-1003-y

Keywords

Navigation