Skip to main content

Advertisement

Log in

Early evaluation of the effects of chemotherapy with longitudinal FDG small-animal PET in human testicular cancer xenografts: early flare response does not reflect refractory disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Aim

We aimed to evaluate the usefulness of FDG PET in the early prediction of the effects of chemotherapy on human testicular cancer xenografts.

Material and methods

Nude rats bearing subcutaneous human embryonal carcinoma xenografts received either cisplatin (5 mg/kg) or saline serum. Small-animal PET studies were performed on days 0, 2, 4 and 7 and compared to immunochemistry studies, flow cytometry studies and hexokinase assays.

Results

Cisplatin treatment resulted in biphasic FDG uptake evolution: a peak was observed on day 2, followed by a marked decrease on day 7 despite an insignificant change in tumour volume. Similarly, a peak in cyclin A immunostaining was observed on days 2 and 4), followed by a significant decrease on day 7. Flow cytometry showed that the cyclin A peak was not related to increased cell proliferation but was due to a transient S and G2/M cell cycle arrest. A marked increase in cell apoptosis was observed from day 2 to day 7. GLUT-1 showed a significant decrease on day 7. Macrophagic infiltrate remained stable except for an increase observed on day 7. In control tumours, continuous growth was observed, all immunostaining markers remaining stable over time. Hexokinase activity was significantly lower on day 7 in treated tumours than in controls.

Conclusion

FDG PET may be useful in the early evaluation of treatment in patients with testicular cancer. In our model, a very early increased [18F]-FDG uptake was related to a transient cell cycle arrest and early stage apoptosis but did not reveal refractory disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bourguet P, Blanc-Vincent MP, Boneu A, Bosquet L, Chauffert B, Corone C, et al. Summary of the Standards, Options and Recommendations for the use of positron emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose (FDP-PET scanning) in oncology (2002). Br J Cancer 2003;89(Suppl 1):S84–91.

    Article  PubMed  Google Scholar 

  2. Avril N, Sassen S, Schmalfeldt B, Naehrig J, Rutke S, Weber WA, et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol 2005;23:7445–53.

    Article  PubMed  Google Scholar 

  3. Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L, et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 2006;24:5366–72.

    Article  PubMed  Google Scholar 

  4. Ceresoli GL, Chiti A, Zucali PA, Rodari M, Lutman RF, Salamina S, et al. Early response evaluation in malignant pleural mesothelioma by positron emission tomography with [18F]fluorodeoxyglucose. J Clin Oncol 2006;24:4587–93.

    Article  PubMed  Google Scholar 

  5. Fruchart C, Reman O, Le Stang N, Musafiri D, Cheze S, Macro M, et al. Prognostic value of early 18 fluorodeoxyglucose positron emission tomography and gallium-67 scintigraphy in aggressive lymphoma: a prospective comparative study. Leuk Lymphoma 2006;47:2547–57.

    Article  PubMed  CAS  Google Scholar 

  6. Yamane T, Daimaru O, Ito S, Yoshiya K, Nagata T, Ito S, et al. Decreased 18F-FDG uptake 1 day after initiation of chemotherapy for malignant lymphoma. J Nucl Med 2004;45:1838–42.

    PubMed  Google Scholar 

  7. Bokemeyer C, Kollmannsberger C, Oechsle K, Dohmen BM, Pfannenberg A, Claussen CD, et al. Early prediction of treatment response to high-dose salvage chemotherapy in patients with relapsed germ cell cancer using [(18)F]FDG PET. Br J Cancer 2002;86:506–11.

    Article  PubMed  CAS  Google Scholar 

  8. Pfannenberg AC, Oechsle K, Kollmannsberger C, Dohmen BM, Bokemeyer C, Bares R, et al. Early prediction of treatment response to high-dose chemotherapy in patients with relapsed germ cell tumors using [18F]FDG-PET, CT or MRI, and tumor marker. Rofo 2004;176:76–84.

    PubMed  CAS  Google Scholar 

  9. Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO. Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res 2005;65:4202–10.

    Article  PubMed  CAS  Google Scholar 

  10. Cullinane C, Dorow DS, Kansara M, Conus N, Binns D, Hicks RJ, et al. An in vivo tumor model exploiting metabolic response as a biomarker for targeted drug development. Cancer Res 2005;65:9633–36.

    Article  PubMed  CAS  Google Scholar 

  11. Su H, Bodenstein C, Dumont RA, Seimbille Y, Dubinett S, Phelps ME, et al. Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res 2006;12:5659–67.

    Article  PubMed  CAS  Google Scholar 

  12. Hwang RF, Yokoi K, Bucana CD, Tsan R, Killion JJ, Evans DB, et al. Inhibition of platelet-derived growth factor receptor phosphorylation by STI571 (Gleevec) reduces growth and metastasis of human pancreatic carcinoma in an orthotopic nude mouse model. Clin Cancer Res 2003;9:6534–44.

    PubMed  CAS  Google Scholar 

  13. Huisman MC, Reder S, Weber AW, Ziegler SI, Schwaiger M. Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl Med Mol Imaging 2007;34:532–40.

    Article  PubMed  Google Scholar 

  14. Chiang S, Cardi C, Matej S, Zhuang H, Newberg A, Alavi A, et al. Clinical validation of fully 3-D versus 2.5-D RAMLA reconstruction on the Philips-ADAC CPET PET scanner. Nucl Med Commun 2004;25:1103–07.

    Article  PubMed  Google Scholar 

  15. Aide N, Louis MH, Dutoit S, Labiche A, Lemoisson E, Briand M, et al. Improvement of semi-quantitative small-animal PET data with recovery coefficients: a phantom and rat study. Nucl Med Commun 2007;28:813–22.

    Article  PubMed  Google Scholar 

  16. Calvet L, Geoerger B, Regairaz M, Opolon P, Machet L, Morizet J, et al. Pleiotrophin, a candidate gene for poor tumor vasculature and in vivo neuroblastoma sensitivity to irinotecan. Oncogene 2006;25:3150–59.

    Article  PubMed  CAS  Google Scholar 

  17. Elie N, Plancoulaine B, Signolle JP, Herlin P. A simple way of quantifying immunostained cell nuclei on the whole histologic section. Cytometry A 2003;56:37–45.

    Article  PubMed  Google Scholar 

  18. Elie N, Kaliski A, Peronneau P, Opolon P, Roche A, Lassau N. Methodology for quantifying interactions between perfusion evaluated by DCE-US and hypoxia throughout tumor growth. Ultrasound Med Biol 2007;33:549–60.

    Article  PubMed  Google Scholar 

  19. Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E, et al. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci U S A 2006;103:18721–26.

    Article  PubMed  CAS  Google Scholar 

  20. Aide N, Labiche A, Herlin P, Paciencia M, Poulain L, Dutoit S, et al. Usefulness of automatic quantification of immunochemical staining on whole tumor sections for correlation with oncological small animal pet studies: an example with cell proliferation, glucose transporter 1 and FDG. Mol Imaging Biol 2008;10:237–44.

    Article  PubMed  Google Scholar 

  21. Chung JK, Lee YJ, Kim C, Choi SR, Kim M, Lee K, et al. Mechanisms related to [18F]fluorodeoxyglucose uptake of human colon cancers transplanted in nude mice. J Nucl Med 1999;40:339–46.

    PubMed  CAS  Google Scholar 

  22. Smith TA. The rate-limiting step for tumor [18F]fluoro-2-deoxy-D-glucose (FDG) incorporation. Nucl Med Biol 2001;28:1–4.

    Article  PubMed  CAS  Google Scholar 

  23. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992;33:1972–80.

    PubMed  CAS  Google Scholar 

  24. Furuta M, Hasegawa M, Hayakawa K, Yamakawa M, Ishikawa H, Nonaka T, et al. Rapid rise in FDG uptake in an irradiated human tumour xenograft. Eur J Nucl Med 1997;24:435–38.

    PubMed  CAS  Google Scholar 

  25. Aliaga A, Rousseau JA, Cadorette J, Croteau E, van Lier JE, Lecomte R, et al. A small animal positron emission tomography study of the effect of chemotherapy and hormonal therapy on the uptake of 2-deoxy-2-[F-18]fluoro-D-glucose in murine models of breast cancer. Mol Imaging Biol 2007;9:144–50.

    Article  PubMed  Google Scholar 

  26. Dehdashti F, Flanagan FL, Mortimer JE, Katzenellenbogen JA, Welch MJ, Siegel BA. Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 1999;26:51–6.

    Article  PubMed  CAS  Google Scholar 

  27. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 2001;19:2797–03.

    PubMed  CAS  Google Scholar 

  28. Fishel ML, He Y, Reed AM, Chin-Sinex H, Hutchins GD, Mendonca MS, et al. Knockdown of the DNA repair and redox signaling protein Ape1/Ref-1 blocks ovarian cancer cell and tumor growth. DNA Repair (Amst) 2008;7:177–86.

    Article  CAS  Google Scholar 

  29. Haberkorn U, Bellemann ME, Brix G, Kamencic H, Morr I, Traut U, et al. Apoptosis and changes in glucose transport early after treatment of Morris hepatoma with gemcitabine. Eur J Nucl Med 2001;28:418–25.

    Article  PubMed  CAS  Google Scholar 

  30. Nanni C, Di Leo K, Tonelli R, Pettinato C, Rubello D, Spinelli A, et al. FDG small animal PET permits early detection of malignant cells in a xenograft murine model. Eur J Nucl Med Mol Imaging 2007;34:755–62.

    Article  PubMed  Google Scholar 

  31. Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 2005;202:654–62.

    Article  PubMed  CAS  Google Scholar 

  32. Friberg S, Mattson S. On the growth rates of human malignant tumors: implications for medical decision making. J Surg Oncol 1997;65:284–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the French Ligue Contre le Cancer, Comité du Calvados. Alexandre Labiche received a fellowship from the Ligue Contre le Cancer, Comité de la Manche. The authors wish to thank Dr. Jacques Chasles (Pathology Department, François Baclesse Centre) for GLUT-1 immunochemistry study analysis, Edwige Lemoisson (Biotical Unit, GRECAN) for cell line management, and Dr. Charbel Mehreb for SA-PET calibrations. The authors also thank Dr. Gutman for his critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Aide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aide, N., Poulain, L., Briand, M. et al. Early evaluation of the effects of chemotherapy with longitudinal FDG small-animal PET in human testicular cancer xenografts: early flare response does not reflect refractory disease. Eur J Nucl Med Mol Imaging 36, 396–405 (2009). https://doi.org/10.1007/s00259-008-0984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0984-x

Keywords

Navigation