Skip to main content

Advertisement

Log in

Principal component analysis of FDG PET in amnestic MCI

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study is to evaluate the combined accuracy of episodic memory performance and 18F-FDG PET in identifying patients with amnestic mild cognitive impairment (aMCI) converting to Alzheimer’s disease (AD), aMCI non-converters, and controls.

Methods

Thirty-three patients with aMCI and 15 controls (CTR) were followed up for a mean of 21 months. Eleven patients developed AD (MCI/AD) and 22 remained with aMCI (MCI/MCI). 18F-FDG PET volumetric regions of interest underwent principal component analysis (PCA) that identified 12 principal components (PC), expressed by coarse component scores (CCS). Discriminant analysis was performed using the significant PCs and episodic memory scores.

Results

PCA highlighted relative hypometabolism in PC5, including bilateral posterior cingulate and left temporal pole, and in PC7, including the bilateral orbitofrontal cortex, both in MCI/MCI and MCI/AD vs CTR. PC5 itself plus PC12, including the left lateral frontal cortex (LFC: BAs 44, 45, 46, 47), were significantly different between MCI/AD and MCI/MCI. By a three-group discriminant analysis, CTR were more accurately identified by PET-CCS + delayed recall score (100%), MCI/MCI by PET-CCS + either immediate or delayed recall scores (91%), while MCI/AD was identified by PET-CCS alone (82%). PET increased by 25% the correct allocations achieved by memory scores, while memory scores increased by 15% the correct allocations achieved by PET.

Conclusion

Combining memory performance and 18F-FDG PET yielded a higher accuracy than each single tool in identifying CTR and MCI/MCI. The PC containing bilateral posterior cingulate and left temporal pole was the hallmark of MCI/MCI patients, while the PC including the left LFC was the hallmark of conversion to AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology 2007;69:1622–34.

    Article  PubMed  Google Scholar 

  2. Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734–46.

    Article  PubMed  Google Scholar 

  3. Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, et al. Natural history of mild cognitive impairment in older persons. Neurology 2002;59:198–205.

    PubMed  CAS  Google Scholar 

  4. Loewenstein DA, Acevedo A, Agron J, Duara R. Stability of neurocognitive impairment in different subtypes of mild cognitive impairment. Dement Geriatr Cogn Disord 2007;23:82–6.

    Article  PubMed  Google Scholar 

  5. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004;256:183–94.

    Article  PubMed  CAS  Google Scholar 

  6. Feldman HH, Jacova C. Mild cognitive impairment. Am J Geriatr Psychiatry 2005;13:645–55.

    Article  PubMed  Google Scholar 

  7. Sarazin M, Berr C, De Rotrou J, Fabrigoule C, Pasquier F, Legrain S, et al. Amnestic syndrome of the medial temporal type identifies prodromal AD. A longitudinal study. Neurology 2007;69:1859–67.

    Article  PubMed  CAS  Google Scholar 

  8. Fossati P, Harvey PO, Le BG, Ergis AM, Jouvent R, Allilaire JF. Verbal memory performance of patients with a first depressive episode and patients with unipolar and bipolar recurrent depression. J Psychiatr Res 2004;38:137–44.

    Article  PubMed  Google Scholar 

  9. Pasquier F, Grymonprez L, Lebert F, Van der Linden M. Memory impairment differs in frontotemporal dementia and Alzheimer’s disease. Neurocase 2001;7:161–71.

    Article  PubMed  CAS  Google Scholar 

  10. Anchisi D, Borroni B, Franceschi F, Kerrouche N, Kalbe E, Beuthien-Beumann B, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol 2005;62:1728–33.

    Article  PubMed  Google Scholar 

  11. Visser PJ, Scheltens P, Verhey FRJ, Schmand B, Launer LJ, Jolles J, et al. Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J Neurol 1999;246:477–85.

    Article  PubMed  CAS  Google Scholar 

  12. Mosconi L, Perani D, Sorbi S, Herholz K, Nacmias B, Holthoff V, et al. MCI conversion to dementia and the APOE genotype. A prediction study with FDG-PET. Neurology 2004;63:2332–40.

    PubMed  CAS  Google Scholar 

  13. Chetelat G, Eustache F, Viader F, De La Sayette V, Pelerin A, Mezegne F, et al. FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 2005;11:14–25.

    Article  PubMed  Google Scholar 

  14. Mosconi L, Tsui WH, Pupi A, De Santi S, Drzezga A, Minoshima S, et al. 18F-FDG PET database of longitudinally confirmed healthy elderly individuals improves detection of mild cognitive impairment and Alzheimer’s disease. J Nucl Med 2007;48:1129–34.

    Article  PubMed  Google Scholar 

  15. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 2003;30:1104–13.

    Article  PubMed  Google Scholar 

  16. Hunt A, Schönknecht P, Henze M, Seidl U, Haberkorn U, Schröder J. Reduced cerebral glucose metabolism in patients at risk for Alzheimer’s disease. Psychiatry Res: Neuroimaging 2007;155:147–54.

    Article  PubMed  CAS  Google Scholar 

  17. Whalley LJ. Brain ageing and dementia: what makes the difference? Br J Psychiatry 2002;181:369–71.

    Article  PubMed  Google Scholar 

  18. Vandenberghe R, Tournoy J. Cognitive aging and Alzheimer’s disease. Postgrad Med J 2005;81:343–52.

    Article  PubMed  CAS  Google Scholar 

  19. Dringenberg HC. Alzheimer’s disease: more than a “cholinergic disorder”—evidence that cholinergic–monoaminergic interactions contribute to EEG slowing and dementia. Behav Brain Res 2000;115:235–49.

    Article  PubMed  CAS  Google Scholar 

  20. Folstein MF, Folstein SE, McHugh PR. “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98.

    Article  PubMed  CAS  Google Scholar 

  21. Katz S, Downs TD, Cash HR, Grotz RC. Progress in development of the index of ADL. Gerontologist 1970;10:20–30.

    PubMed  CAS  Google Scholar 

  22. Lawton MP, Brody EM. Assessment of older people; self-maintaining and instrumental activities of daily living. Gerontologist 1969;9:179–86.

    PubMed  CAS  Google Scholar 

  23. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994;44:2308–14.

    PubMed  CAS  Google Scholar 

  24. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P, et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992;55:967–72.

    Article  PubMed  CAS  Google Scholar 

  25. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001;32:1318–22.

    PubMed  CAS  Google Scholar 

  26. Masur DM, Fuld PA, Blau AD, Thal LJ, Levin HS, Aronson MK. Distinguishing normal and demented elderly with selective reminding test. J Clin Exp Neuropsychol 1989;11:615–30.

    Article  PubMed  CAS  Google Scholar 

  27. Carlesimo GA, Caltagirone C, Gainotti G. The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analysis of cognitive impairment. The group for the standardization of the Mental Deterioration Battery. Eur Neurol 1996;36:378–84.

    Article  PubMed  CAS  Google Scholar 

  28. Spinnler H, Tognoni G. Standardizzazione e taratura Italiana di test neuropsicologici. Ital J Neurol Sci 1987;6(Suppl. 8):1–120.

    Google Scholar 

  29. Barbarotto R, Laiacona M, Frosio R, Vecchio M, Farinato A, Capitani E. A normative study on visual reaction times and two Stroop colour-word tests. Ital J Neurol Sci 1998;19:161–70.

    Article  PubMed  CAS  Google Scholar 

  30. Watson YI, Arfken CL, Birge SJ. Clock completion: an objective screening test for dementia. J Am Geriatr Soc 1993;41:1235–40.

    PubMed  CAS  Google Scholar 

  31. Amodio P, Wenin H, Del Piccolo F, Mapelli D, Montagnese S, Pellegrini A, et al. Variability of trail making test, symbol digit test and line trait test in normal people. A normative study taking into account age-dependent decline and sociobiological variables. Aging Clin Exp Res 2002;14:117–31.

    PubMed  Google Scholar 

  32. Knopman DS, Boeve BF, Parisi JE, Dickson DW, Smith GE, Ivnik RJ. Antemortem diagnosis of frontotemporal lobar degeneration. Ann Neurol 2005;57:480–8.

    Article  PubMed  Google Scholar 

  33. Loeb C, Gandolfo C. Diagnostic evaluation of degenerative and vascular dementia. Stroke 1983;14:399–401.

    PubMed  CAS  Google Scholar 

  34. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984;34:939–44.

    PubMed  CAS  Google Scholar 

  35. Bartenstein P, Asenbaum S, Catafau A, Halldin C, Pilowski L, Pupi A, et al. European Association of Nuclear Medicine procedure guidelines for brain imaging using [18F]FDG. Eur J Nucl Med 2002;29:BP43–BP48.

    CAS  Google Scholar 

  36. Greitz T, Bohm C, Holte S, Eriksson L. A computerized brain atlas: construction, anatomical content, and some applications. J Comput Assist Tomog 1991;15:26–38.

    Article  CAS  Google Scholar 

  37. Thurfjell L, Bohm C, Bengtsson E. CBA—an atlas based software tool used to facilitate the interpretation of neuroimaging data. Comput Methods Programs Biomed 1995;4:51–71.

    Article  Google Scholar 

  38. Andersson JLR, Thurfjell L. Implementation and validation of a fully automatic system for intra- and inter-individual registration of PET brain scans. J Comput Assist Tomogr 1997;21:136–44.

    Article  PubMed  CAS  Google Scholar 

  39. Poulin P, Zakzanis KK. In vivo neuroanatomy of Alzheimer’s disease: evidence from structural and functional brain imaging. Brain Cogn 2002;49:220–5.

    PubMed  CAS  Google Scholar 

  40. Van Heertum RL, Tikofsky RS. Positron emission tomography and single photon emission computed tomography brain imaging in the evaluation of Dementia. Semin Nucl Med 2003;33:77–85.

    Article  PubMed  Google Scholar 

  41. Pett MA, Lackey NR, Sullivan JJ. Making sense of factor analysis in health care research: a practical guide. London: Sage; 2003.

    Google Scholar 

  42. Rodriguez G, Nobili F, Copello F, Vitali P, Gianelli MV, Taddei G, et al. 99mTc-HMPAO regional cerebral blood flow and quantitative electroencephalography in Alzheimer’s disease: a correlative study. J Nucl Med 1999;40:522–9.

    PubMed  CAS  Google Scholar 

  43. Pagani M, Salmaso D, Rodriguez G, Nardo D, Larsson SA, Nobili F. Principal component analysis in mild and moderate Alzheimer’s Disease. Psychiatry Res: Neuroimaging; in press.

  44. Varrone A, Pagani M, Salvatore E, Salmaso D, Sansone V, Amboni M, et al. Identification by [99mTc]ECD SPECT of anterior cingulate hypoperfusion in progressive supranuclear palsy, in comparison with Parkinson’s disease. Eur J Nucl Med Mol Imaging 2007;34:1071–81.

    Article  PubMed  Google Scholar 

  45. Scarmeas N, Habeck CG, Zarahn E, Anderson KE, Park A, Hilton J, et al. Covariance PET patterns in early Alzheimer’s disease and subjects with cognitive impairment but no dementia: utility in group discrimination and correlations with functional performance. NeuroImage 2004;23:35–45.

    Article  PubMed  Google Scholar 

  46. Salmon E, Kerrouche N, Perani D, Lekeu F, Holthoff V, Beuthien-Baumann B, et al. On the multivariate nature of brain metabolic impairment in Alzheimer’s disease. Neurobiol Aging 2007; July 23; epub ahead of print.

  47. Mosconi L, De Santi S, Brys M, Tsui WH, Pirraglia E, Glodzik-Sobanska L, et al. Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints. Biol Psychiatry 2008;63:609–18.

    Article  PubMed  CAS  Google Scholar 

  48. Liddell BJ, Paul RH, Arns M, Gordon N, Kukla M, Rowe D, et al. Rates of decline distinguish Alzheimer’s disease and mild cognitive impairment relative to normal aging: integrating cognition and brain function. J Integr Neurosci 2007;6:141–74.

    Article  PubMed  Google Scholar 

  49. Kantarci K, Jack CR Jr. Neuroimaging in Alzheimer disease: an evidence-based review. Neuroimaging Clin N Am 2003;13:197–209.

    Article  PubMed  Google Scholar 

  50. Mesulam MM, Shaw P, Mash D, et al. Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 2004;55:815–28.

    Article  PubMed  CAS  Google Scholar 

  51. Blennow K, De Leon M, Zetterberg H. Alzheimer’s disease. Lancet 2006;368:387–403.

    Article  PubMed  CAS  Google Scholar 

  52. Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and 18F-FDG PET. J Nucl Med 2005;46:1625–32.

    PubMed  CAS  Google Scholar 

  53. DeCarli C. Mild cognitive impairment: diagnosis, prognosis, aetiology, and treatment. Lancet Neurol 2003;2:15–21.

    Article  PubMed  Google Scholar 

  54. de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H. Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-D-glucosey positron-emission tomography (FDG PET). Proc Natl Acad Sci USA 2001;98:10966–71.

    Article  PubMed  Google Scholar 

  55. Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, de la Sayette V, et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study. NeuroImage 2005;27:934–46.

    Article  PubMed  CAS  Google Scholar 

  56. Ringman JM, O’Neill J, Geschwind D, Medina L, Apostolova LG, Rodriguez Y, et al. Diffusion tensor imaging in preclinical and presymptomatic carriers of familial Alzheimer’s disease mutations. Brain 2007;130:1767–76.

    Article  PubMed  Google Scholar 

  57. Braak H, Braak E. Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol (Berl) 1996;92:197–201.

    Article  CAS  Google Scholar 

  58. Bartzokis G, Sultzer D, Lu PH, Nuechterlein KH, Mintz J, Cummings JL. Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical “disconnection” in aging and Alzheimer’s disease. Neurobiol Aging 2004;25:843–51.

    Article  PubMed  CAS  Google Scholar 

  59. Cabeza R, Nyberg L. Imaging cognition. II. An empirical review of 275 PET and fMRI studies. J Cogn Neurosci 2000;12:1–47.

    Article  PubMed  CAS  Google Scholar 

  60. Simic G, Bexheti S, Kelovic Z, Kos M, Grbic K, Hof PR, et al. Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex. Neuroscience 2005;130:911–925.

    Article  PubMed  CAS  Google Scholar 

  61. Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 2005;64:1860–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study complies with the current Italian laws and received ethical approval.

We thank Dr. Giampiero Villavecchia for supervising PET acquisition and Dr. Alessandra Piccini for performing ApoE evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Nobili.

Appendix 1

Appendix 1

PCs may be treated as new variables, and their values can be computed for each subject. These values are known as factor scores, or component scores (CS), and are a linear combination of the variables included in the analysis. They should be used both to re-evaluate group differences and as predictor variables in diagnostic research. However, in the latter case, it is preferable to use an imperfect estimate (CCS) generated by the algebraic sum of all the VROIs with higher loading in a given factor. Therefore, as CCS take into account the sign of factor loadings, they can deeply differ from the individual VROI values belonging to each PC. Unlike CS, they are not a linear combination of each variable, but an estimate of PCs. Like CS, they are essentially uncorrelated to one another. An advantage of using CCS is that they can be more easily computed and interpreted than CS and they can also be compared among studies [38].

The number of factors was determined by the number of eigenvalues greater than one. Variables with an absolute factor loading greater than 0.5 were considered as representative of a given factor. This is an arbitrary value, but it is commonly used since it explains a moderate part of the variance of the factor. By increasing the value further, some variables may be eliminated from the calculation of CCS, thus reducing the variance explained by these scores. CCS were standardised to a 0–1 scale. The stability of the PCA was evaluated by means of the T2 Hotelling’s test. Hotelling’s T2 is a measure of the multivariate distance of each observation from the centre of the data set. When PCA is done, T2 and PROB can be saved. PROB is the upper-tail probability of T2. The robustness of the PCA can be assessed looking at the outliers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobili, F., Salmaso, D., Morbelli, S. et al. Principal component analysis of FDG PET in amnestic MCI. Eur J Nucl Med Mol Imaging 35, 2191–2202 (2008). https://doi.org/10.1007/s00259-008-0869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0869-z

Keywords

Navigation