Skip to main content

Advertisement

Log in

Present and future of clinical cardiovascular PET imaging in Europe—a position statement by the European Council of Nuclear Cardiology (ECNC)

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

This position statement was prepared by the European Council of Nuclear Cardiology and summarises the current and future potential of PET as a clinical cardiovascular diagnostic imaging tool. The first section describes how methodological developments have positively influenced the transition of PET from a research tool towards a clinical diagnostic test. In the second section, evidence in support of its superior diagnostic accuracy, its value to guide decision making and to predict outcome and its cost effectiveness is summarised. The third section finally outlines new PET-based approaches and concepts, which will likely influence clinical cardiovascular medicine in the future. The notion that integration of cardiac PET into healthcare systems and disease management algorithms will advance quality of care is increasingly supported by the literature highlighted in this statement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hesse B, Lindhardt TB, Acampa W, Anagnostopoulos C, Ballinger J, Bax JJ, et al. EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging 2008;35:851–85.

    Article  PubMed  CAS  Google Scholar 

  2. Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855–97.

    Article  PubMed  CAS  Google Scholar 

  3. Marcassa C, Bax JJ, Bengel F, Hesse B, Petersen CL, Reyes E, et al. Clinical value, cost-effectiveness, and safety of myocardial perfusion scintigraphy: a position statement. Eur Heart J 2008;29:557–63.

    Article  PubMed  Google Scholar 

  4. Marcassa C, Bischof DA, Cuocolo A, Hesse B, Kaufmann P, Knuuti J, et al. The regulatory background of nuclear cardiology in Europe: a survey by the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging 2006;33:1508–12.

    Article  PubMed  CAS  Google Scholar 

  5. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Stress myocardial perfusion single-photon emission computed tomography is clinically effective and cost effective in risk stratification of patients with a high likelihood of coronary artery disease (CAD) but no known CAD. J Am Coll Cardiol 2004;43:200–8.

    Article  PubMed  Google Scholar 

  6. Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation 2003;108:1404–18.

    Article  PubMed  Google Scholar 

  7. Shaw LJ, Hendel R, Borges-Neto S, Lauer MS, Alazraki N, Burnette J, et al. Prognostic value of normal exercise and adenosine (99m)Tc-tetrofosmin SPECT imaging: results from the multicenter registry of 4,728 patients. J Nucl Med 2003;44:134–9.

    PubMed  Google Scholar 

  8. Rigo P, Van BP, Foulon J, Safi M, Engdahl J, Links J. Quantitative evaluation of a comprehensive motion, resolution, and attenuation correction program: initial experience. J Nucl Cardiol 1998;5:458–68.

    Article  PubMed  CAS  Google Scholar 

  9. Tamaki N, Yonekura Y, Senda M, Yamashita K, Koide H, Saji H, et al. Value and limitation of stress thallium-201 single photon emission computed tomography: comparison with nitrogen-13 ammonia positron tomography. J Nucl Med 1988;29:1181–8.

    PubMed  CAS  Google Scholar 

  10. Martin W, Tweddel AC, Hutton I. Balanced triple-vessel disease: enhanced detection by estimated myocardial thallium uptake. Nucl Med Commun 1992;13:149–53.

    Article  PubMed  CAS  Google Scholar 

  11. Bateman TM, Maddahi J, Gray RJ, Murphy FL, Garcia EV, Conklin CM, et al. Diffuse slow washout of myocardial thallium-201: a new scintigraphic indicator of extensive coronary artery disease. J Am Coll Cardiol 1984;4:55–64.

    Article  PubMed  CAS  Google Scholar 

  12. Aarnoudse WH, Botman KJ, Pijls NH. False-negative myocardial scintigraphy in balanced three-vessel disease, revealed by coronary pressure measurement. Int J Cardiovasc Intervent 2003;5:67–71.

    PubMed  Google Scholar 

  13. Ito Y, Katoh C, Noriyasu K, Kuge Y, Furuyama H, Morita K, et al. Estimation of myocardial blood flow and myocardial flow reserve by 99mTc-sestamibi imaging: comparison with the results of [15O]H2O PET. Eur J Nucl Med Mol Imaging 2003;30:281–7.

    PubMed  CAS  Google Scholar 

  14. Schelbert HR, Ashburn WL, Chauncey DM, Halpern SE. Comparative myocardial uptake of intravenously administered radionuclides. J Nucl Med 1974;15:1092–1100.

    PubMed  CAS  Google Scholar 

  15. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 2008;29:193–207.

    Article  PubMed  Google Scholar 

  16. Lautamaki R, Brown TL, Merrill J, Bengel FM. CT-based attenuation correction in (82)Rb-myocardial perfusion PET-CT: incidence of misalignment and effect on regional tracer distribution. Eur J Nucl Med Mol Imaging 2008;35:305–10.

    Article  PubMed  CAS  Google Scholar 

  17. Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med 2007;48:1112–21.

    Article  PubMed  Google Scholar 

  18. Martinez-Moller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: frequency, effects, and potential solutions. J Nucl Med 2007;48:188–93.

    PubMed  Google Scholar 

  19. Alessio AM, Kohlmyer S, Branch K, Chen G, Caldwell J, Kinahan P. Cine CT for attenuation correction in cardiac PET/CT. J Nucl Med 2007;48:794–801.

    Article  PubMed  Google Scholar 

  20. Patterson RE, Churchwell KB, Eisner RL. Diagnosis of coronary artery disease in women: roles of three dimensional imaging with magnetic resonance or positron emission tomography. Am J Card Imaging 1996;10:78–88.

    PubMed  CAS  Google Scholar 

  21. Knesaurek K, Machac J, Krynyckyi BR, Almeida OD. Comparison of 2-dimensional and 3-dimensional 82Rb myocardial perfusion PET imaging. J Nucl Med 2003;44:1350–56.

    PubMed  Google Scholar 

  22. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. J Nucl Med 2007;48:349–58.

    PubMed  Google Scholar 

  23. Brown TL, Merrill J, Volokh L, Bengel FM. Determinants of the response of left ventricular ejection fraction to vasodilator stress in electrocardiographically gated (82)rubidium myocardial perfusion PET. Eur J Nucl Med Mol Imaging 2008;35:336–42.

    Article  PubMed  Google Scholar 

  24. Martinez-Moller A, Zikic D, Botnar RM, Bundschuh RA, Howe W, Ziegler SI, et al. Dual cardiac-respiratory gated PET: implementation and results from a feasibility study. Eur J Nucl Med Mol Imaging 2007;34:1447–54.

    Article  PubMed  Google Scholar 

  25. Schafers KP, Stegger L. Combined imaging of molecular function and morphology with PET/CT and SPECT/CT: image fusion and motion correction. Basic Res Cardiol 2008;103:191–9.

    Article  PubMed  Google Scholar 

  26. Machac J. Cardiac positron emission tomography imaging. Semin Nucl Med 2005;35:17–36.

    Article  PubMed  Google Scholar 

  27. Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, et al. Quantification of regional myocardial blood flow in vivo with H215O. Circulation 1984;70:724–33.

    PubMed  CAS  Google Scholar 

  28. Selwyn AP, Allan RM, L'Abbate A, Horlock P, Camici P, Clark J, et al. Relation between regional myocardial uptake of rubidium-82 and perfusion: absolute reduction of cation uptake in ischemia. Am J Cardiol 1982;50:112–21.

    Article  PubMed  CAS  Google Scholar 

  29. Goldstein RA, Mullani NA, Marani SK, Fisher DJ, Gould KL, O'Brien HA Jr. Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacologic interventions. J Nucl Med 1983;24:907–15.

    PubMed  CAS  Google Scholar 

  30. Groves AM, Speechly-Dick ME, Dickson JC, Kayani I, Endozo R, Blanchard P, et al. Cardiac 82Rubidium PET/CT: initial European experience. Eur J Nucl Med Mol Imaging 2007;34:1965–72.

    Article  PubMed  Google Scholar 

  31. Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging 2002;29:1257–66.

    Article  PubMed  Google Scholar 

  32. Knuuti MJ, Nuutila P, Ruotsalainen U, Saraste M, Harkonen R, Ahonen A, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255–62.

    PubMed  CAS  Google Scholar 

  33. Bacharach SL, Bax JJ, Case J, Delbeke D, Kurdziel KA, Martin WH, et al. PET myocardial glucose metabolism and perfusion imaging: part 1—guidelines for data acquisition and patient preparation. J Nucl Cardiol 2003;10:543–56.

    Article  PubMed  Google Scholar 

  34. Knuuti MJ, Yki-Jarvinen H, Voipio-Pulkki LM, Maki M, Ruotsalainen U, Harkonen R, et al. Enhancement of myocardial [fluorine-18]fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med 1994;35:989–98.

    PubMed  CAS  Google Scholar 

  35. Bax JJ, Veening MA, Visser FC, van LA, Heine RJ, Cornel JH, et al. Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med 1997;24:35–41.

    Article  PubMed  CAS  Google Scholar 

  36. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007;116:1290–305.

    Article  PubMed  Google Scholar 

  37. Thompson RC, Cullom SJ. Issues regarding radiation dosage of cardiac nuclear and radiography procedures. J Nucl Cardiol 2006;13:19–23.

    Article  PubMed  Google Scholar 

  38. Schleipman AR, Castronovo FP Jr., Di Carli MF, Dorbala S. Occupational radiation dose associated with Rb-82 myocardial perfusion positron emission tomography imaging. J Nucl Cardiol 2006;13:378–84.

    Article  PubMed  Google Scholar 

  39. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation 2007;115:1464–80.

    Article  PubMed  Google Scholar 

  40. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24–33.

    Article  PubMed  Google Scholar 

  41. Sampson UK, Dorbala S, Limaye A, Kwong R, Di Carli MF. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 2007;49:1052–8.

    Article  PubMed  CAS  Google Scholar 

  42. Marwick TH, Shan K, Patel S, Go RT, Lauer MS. Incremental value of rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am J Cardiol 1997;80:865–70.

    Article  PubMed  CAS  Google Scholar 

  43. Yoshinaga K, Chow BJ, Williams K, Chen L, Dekemp RA, Garrard L, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 2006;48:1029–39.

    Article  PubMed  Google Scholar 

  44. Schenker MP, Dorbala S, Hong EC, Rybicki FJ, Hachamovitch R, Kwong RY, et al. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation 2008;117:1693–700.

    Article  PubMed  Google Scholar 

  45. Patterson RE, Eisner RL, Horowitz SF. Comparison of cost-effectiveness and utility of exercise ECG, single photon emission computed tomography, positron emission tomography, and coronary angiography for diagnosis of coronary artery disease. Circulation 1995;91:54–65.

    PubMed  CAS  Google Scholar 

  46. Gould KL, Goldstein RA, Mullani NA. Economic analysis of clinical positron emission tomography of the heart with rubidium-82. J Nucl Med 1989;30:707–17.

    PubMed  CAS  Google Scholar 

  47. Merhige ME, Breen WJ, Shelton V, Houston T, D'Arcy BJ, Perna AF. Impact of myocardial perfusion imaging with PET and (82)Rb on downstream invasive procedure utilization, costs, and outcomes in coronary disease management. J Nucl Med 2007;48:1069–76.

    Article  PubMed  Google Scholar 

  48. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  49. Tamaki N, Yonekura Y, Yamashita K, Ohtani H, Hirata K, Ban T, et al. Prediction of reversible ischemia after coronary artery bypass grafting by positron emission tomography. J Cardiol 1991;21:193–201.

    PubMed  CAS  Google Scholar 

  50. DePuey EG, Ghesani M, Schwartz M, Friedman M, Nichols K, Salensky H. Comparative performance of gated perfusion SPECT wall thickening, delayed thallium uptake, and F-18 fluorodeoxyglucose SPECT in detecting myocardial viability. J Nucl Cardiol 1999;6:418–28.

    Article  PubMed  CAS  Google Scholar 

  51. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 1991;83:26–37.

    PubMed  CAS  Google Scholar 

  52. Go RT, MacIntyre WJ, Saha GB, Cook SA, Neumann DR, Chen EQ, et al. Hibernating myocardium versus scar: severity of irreversible decreased myocardial perfusion in prediction of tissue viability. Radiology 1995;194:151–5.

    PubMed  CAS  Google Scholar 

  53. Altehoefer C, vom DJ, Biedermann M, Uebis R, Beilin I, Sheehan F, et al. Significance of defect severity in technetium-99m-MIBI SPECT at rest to assess myocardial viability: comparison with fluorine-18-FDG PET. J Nucl Med 1994;35:569–74.

    PubMed  CAS  Google Scholar 

  54. Schoder H, Campisi R, Ohtake T, Hoh CK, Moon DH, Czernin J, et al. Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. J Am Coll Cardiol 1999;33:1328–37.

    Article  PubMed  CAS  Google Scholar 

  55. Siebelink HM, Blanksma PK, Crijns HJ, Bax JJ, van Boven AJ, Kingma T, et al. No difference in cardiac event-free survival between positron emission tomography-guided and single-photon emission computed tomography-guided patient management: a prospective, randomized comparison of patients with suspicion of jeopardized myocardium. J Am Coll Cardiol 2001;37:81–8.

    Article  PubMed  CAS  Google Scholar 

  56. Bax JJ, Visser FC, Blanksma PK, Veening MA, Tan ES, Willemsen TM, et al. Comparison of myocardial uptake of fluorine-18-fluorodeoxyglucose imaged with PET and SPECT in dyssynergic myocardium. J Nucl Med 1996;37:1631–6.

    PubMed  CAS  Google Scholar 

  57. Marwick TH, Zuchowski C, Lauer MS, Secknus MA, Williams J, Lytle BW. Functional status and quality of life in patients with heart failure undergoing coronary bypass surgery after assessment of myocardial viability. J Am Coll Cardiol 1999;33:750–8.

    Article  PubMed  CAS  Google Scholar 

  58. Sawada S, Elsner G, Segar DS, O'Shaughnessy M, Khouri S, Foltz J, et al. Evaluation of patterns of perfusion and metabolism in dobutamine-responsive myocardium. J Am Coll Cardiol 1997;29:55–61.

    Article  PubMed  CAS  Google Scholar 

  59. Mariani MA, Palagi C, Donatelli F, Mengozzi G, Biadi O, Vanoli G, et al. Identification of hibernating myocardium: a comparison between dobutamine echocardiography and study of perfusion and metabolism in patients with severe left ventricular dysfunction. Am J Card Imaging 1995;9:1–8.

    PubMed  CAS  Google Scholar 

  60. Pagano D, Bonser RS, Townend JN, Ordoubadi F, Lorenzoni R, Camici PG. Predictive value of dobutamine echocardiography and positron emission tomography in identifying hibernating myocardium in patients with postischaemic heart failure. Heart 1998;79:281–8.

    PubMed  CAS  Google Scholar 

  61. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445–53.

    Article  PubMed  CAS  Google Scholar 

  62. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 2002;105:162–7.

    Article  PubMed  Google Scholar 

  63. Kaandorp TA, Lamb HJ, van der Wall EE, de RA, Bax JJ. Cardiovascular MR to access myocardial viability in chronic ischaemic LV dysfunction. Heart 2005;91:1359–65.

    Article  PubMed  CAS  Google Scholar 

  64. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 2007;32:375–410.

    Article  PubMed  Google Scholar 

  65. Beanlands RS, Hendry PJ, Masters RG, Dekemp RA, Woodend K, Ruddy TD. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 1998;98:II51–II56.

    PubMed  CAS  Google Scholar 

  66. Tarakji KG, Brunken R, McCarthy PM, Al-Chekakie MO, bdel-Latif A, Pothier CE, et al. Myocardial viability testing and the effect of early intervention in patients with advanced left ventricular systolic dysfunction. Circulation 2006;113:230–7.

    Article  PubMed  Google Scholar 

  67. Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol 2007;50:2002–12.

    Article  PubMed  Google Scholar 

  68. Beanlands RS, Dekemp RA, Smith S, Johansen H, Ruddy TD. F-18-fluorodeoxyglucose PET imaging alters clinical decision making in patients with impaired ventricular function. Am J Cardiol 1997;79:1092–5.

    Article  PubMed  CAS  Google Scholar 

  69. Jacklin PB, Barrington SF, Roxburgh JC, Jackson G, Sariklis D, West PA, et al. Cost-effectiveness of preoperative positron emission tomography in ischemic heart disease. Ann Thorac Surg 2002;73:1403–9.

    Article  PubMed  Google Scholar 

  70. Brudin LH, Valind SO, Rhodes CG, Pantin CF, Sweatman M, Jones T, et al. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med 1994;21:297–305.

    Article  PubMed  CAS  Google Scholar 

  71. Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, Kamigaki M, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J 2005;26:1538–43.

    Article  PubMed  Google Scholar 

  72. Lewis PJ, Salama A. Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. J Nucl Med 1994;35:1647–9.

    PubMed  CAS  Google Scholar 

  73. Nishiyama Y, Yamamoto Y, Fukunaga K, Takinami H, Iwado Y, Satoh K, et al. Comparative evaluation of 18F-FDG PET and 67Ga scintigraphy in patients with sarcoidosis. J Nucl Med 2006;47:1571–6.

    PubMed  Google Scholar 

  74. Okumura W, Iwasaki T, Toyama T, Iso T, Arai M, Oriuchi N, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med 2004;45:1989–98.

    PubMed  Google Scholar 

  75. Meller J, Strutz F, Siefker U, Scheel A, Sahlmann CO, Lehmann K, et al. Early diagnosis and follow-up of aortitis with [(18)F]FDG PET and MRI. Eur J Nucl Med Mol Imaging 2003;30:730–6.

    PubMed  CAS  Google Scholar 

  76. Webb M, Chambers A, AL-Nahhas A, Mason JC, Maudlin L, Rahman L, et al. The role of 18F-FDG PET in characterising disease activity in Takayasu arteritis. Eur J Nucl Med Mol Imaging 2004;31:627–34.

    Article  PubMed  Google Scholar 

  77. Hernandez-Pampaloni M, Allada V, Fishbein MC, Schelbert HR. Myocardial perfusion and viability by positron emission tomography in infants and children with coronary abnormalities: correlation with echocardiography, coronary angiography, and histopathology. J Am Coll Cardiol 2003;41:618–26.

    Article  PubMed  Google Scholar 

  78. Schroeder S, Achenbach S, Bengel F, Burgstahler C, Cademartiri F, de FP, et al. Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J 2008;29:531–56.

    Article  PubMed  Google Scholar 

  79. Leber AW, Knez A, von ZF, Becker A, Nikolaou K, Paul S, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 2005;46:147–54.

    Article  PubMed  Google Scholar 

  80. Ropers D, Baum U, Pohle K, Anders K, Ulzheimer S, Ohnesorge B, et al. Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 2003;107:664–6.

    Article  PubMed  Google Scholar 

  81. Hacker M, Jakobs T, Matthiesen F, Vollmar C, Nikolaou K, Becker C, et al. Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences. J Nucl Med 2005;46:1294–300.

    PubMed  Google Scholar 

  82. Schuijf JD, Wijns W, Jukema JW, Atsma DE, de RA, Lamb HJ, et al. Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 2006;48:2508–14.

    Article  PubMed  Google Scholar 

  83. Rispler S, Keidar Z, Ghersin E, Roguin A, Soil A, Dragu R, et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 2007;49:1059–67.

    Article  PubMed  Google Scholar 

  84. Di Carli MF, Dorbala S, Curillova Z, Kwong RJ, Goldhaber SZ, Rybicki FJ, et al. Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl Cardiol 2007;14:799–809.

    Article  PubMed  Google Scholar 

  85. Yalamanchili P, Wexler E, Hayes M, Yu M, Bozek J, Kagan M, et al. Mechanism of uptake and retention of F-18 BMS-747158-02 in cardiomyocytes: a novel PET myocardial imaging agent. J Nucl Cardiol 2007;14:782–8.

    Article  PubMed  Google Scholar 

  86. Yu M, Guaraldi MT, Mistry M, Kagan M, McDonald JL, Drew K, et al. BMS-747158-02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol 2007;14:789–98.

    Article  PubMed  CAS  Google Scholar 

  87. Huisman MC, Higuchi T, Reder S, Nekolla SG, Poethko T, Wester HJ, et al. Initial characterization of an 18F-labeled myocardial perfusion tracer. J Nucl Med 2008;49:630–6.

    Article  PubMed  Google Scholar 

  88. Madar I, Ravert HT, Du Y, Hilton J, Volokh L, Dannals RF, et al. Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med 2006;47:1359–66.

    PubMed  CAS  Google Scholar 

  89. Madar I, Ravert H, Dipaula A, Du Y, Dannals RF, Becker L. Assessment of severity of coronary artery stenosis in a canine model using the PET agent 18F-fluorobenzyl triphenyl phosphonium: comparison with 99mTc-tetrofosmin. J Nucl Med 2007;48:1021–30.

    Article  PubMed  CAS  Google Scholar 

  90. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 2005;46:75–88.

    PubMed  Google Scholar 

  91. Duvernoy CS, Meyer C, Seifert-Klauss V, Dayanikli F, Matsunari I, Rattenhuber J, et al. Gender differences in myocardial blood flow dynamics: lipid profile and hemodynamic effects. J Am Coll Cardiol 1999;33:463–70.

    Article  PubMed  CAS  Google Scholar 

  92. Uren NG, Camici PG, Melin JA, Bol A, de BB, Radvan J, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med 1995;36:2032–6.

    PubMed  CAS  Google Scholar 

  93. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 2001;50:151–61.

    Article  PubMed  CAS  Google Scholar 

  94. Campisi R, Czernin J, Schoder H, Sayre JW, Marengo FD, Phelps ME, et al. Effects of long-term smoking on myocardial blood flow, coronary vasomotion, and vasodilator capacity. Circulation 1998;98:119–25.

    PubMed  CAS  Google Scholar 

  95. Pitkanen OP, Raitakari OT, Niinikoski H, Nuutila P, Iida H, Voipio-Pulkki LM, et al. Coronary flow reserve is impaired in young men with familial hypercholesterolemia. J Am Coll Cardiol 1996;28:1705–11.

    Article  PubMed  CAS  Google Scholar 

  96. Pitkanen OP, Nuutila P, Raitakari OT, Ronnemaa T, Koskinen PJ, Iida H, et al. Coronary flow reserve is reduced in young men with IDDM. Diabetes 1998;47:248–54.

    Article  PubMed  CAS  Google Scholar 

  97. Paternostro G, Camici PG, Lammerstma AA, Marinho N, Baliga RR, Kooner JS, et al. Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography. J Clin Invest 1996;98:2094–9.

    Article  PubMed  CAS  Google Scholar 

  98. Lautamaki R, Airaksinen KE, Seppanen M, Toikka J, Harkonen R, Luotolahti M, et al. Insulin improves myocardial blood flow in patients with type 2 diabetes and coronary artery disease. Diabetes 2006;55:511–6.

    Article  PubMed  CAS  Google Scholar 

  99. Higuchi T, Abletshauser C, Nekolla SG, Schwaiger M, Bengel FM. Effect of the angiotensin receptor blocker valsartan on coronary microvascular flow reserve in moderately hypertensive patients with stable coronary artery disease. Microcirculation 2007;14:1–8.

    Article  CAS  Google Scholar 

  100. Bengel FM, Abletshauser C, Neverve J, Schnell O, Nekolla SG, Standl E, et al. Effects of nateglinide on myocardial microvascular reactivity in Type 2 diabetes mellitus—a randomized study using positron emission tomography. Diabet Med 2005;22:158–63.

    Article  PubMed  CAS  Google Scholar 

  101. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 2002;105:186–93.

    Article  PubMed  Google Scholar 

  102. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003;349:1027–35.

    Article  PubMed  CAS  Google Scholar 

  103. Schindler TH, Nitzsche EU, Schelbert HR, Olschewski M, Sayre J, Mix M, et al. Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol 2005;45:1505–12.

    Article  PubMed  Google Scholar 

  104. Parkash R, Dekemp RA, Ruddy TD, Kitsikis A, Hart R, Beauchesne L, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440–9.

    Article  PubMed  CAS  Google Scholar 

  105. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL. Noninvasive assessment of coronary collaterals in man by PET perfusion imaging. J Nucl Med 1990;31:259–70.

    PubMed  CAS  Google Scholar 

  106. Garza D, Tosh AV, Roberti R, Dalal P, Reimers C, Ongseng F, et al. Detection of coronary collaterals using dipyridamole PET myocardial perfusion imaging with rubidium-82. J Nucl Med 1997;38:39–43.

    PubMed  CAS  Google Scholar 

  107. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996;37:1701–12.

    PubMed  CAS  Google Scholar 

  108. Machac J, Knesaurek K, Chen H, Almeida O, Krynyckyi BR, Kim C. Validation of a practical method of coronary flow reserve quantification with rubidium-82 myocardial PET perfusion imaging. J Nucl Med 2003;44:90P.

    Google Scholar 

  109. Lin JW, Sciacca RR, Chou RL, Laine AF, Bergmann SR. Quantification of myocardial perfusion in human subjects using 82Rb and wavelet-based noise reduction. J Nucl Med 2001;42:201–8.

    PubMed  CAS  Google Scholar 

  110. El Fakhri G, Sitek A, Guerin B, Kijewski MF, Di Carli MF, Moore SC. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med 2005;46:1264–71.

    PubMed  Google Scholar 

  111. Falk E. Why do plaques rupture? Circulation 1992;86:III30–III42.

    PubMed  CAS  Google Scholar 

  112. Davies JR, Rudd JH, Fryer TD, Graves MJ, Clark JC, Kirkpatrick PJ, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 2005;36:2642–47.

    Article  PubMed  Google Scholar 

  113. Davies JR, Rudd JH, Weissberg PL. Molecular and metabolic imaging of atherosclerosis. J Nucl Med 2004;45:1898–907.

    PubMed  CAS  Google Scholar 

  114. Davies JR, Rudd JH, Weissberg PL, Narula J. Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 2006;47:C57–C68.

    Article  PubMed  CAS  Google Scholar 

  115. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 2004;45:1816–21.

    PubMed  Google Scholar 

  116. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245–50.

    PubMed  CAS  Google Scholar 

  117. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–11.

    Article  PubMed  CAS  Google Scholar 

  118. Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007;50:892–6.

    Article  PubMed  Google Scholar 

  119. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818–24.

    Article  PubMed  Google Scholar 

  120. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48:1825–31.

    Article  PubMed  CAS  Google Scholar 

  121. Bengel FM. Atherosclerosis imaging on the molecular level. J Nucl Cardiol 2006;13:111–8.

    Article  PubMed  Google Scholar 

  122. Bengel FM. Nuclear imaging in cardiac cell therapy. Heart Fail Rev 2006;11:325–32.

    Article  PubMed  Google Scholar 

  123. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005;111:2198–202.

    Article  PubMed  Google Scholar 

  124. Wagner B, Anton M, Nekolla SG, Reder S, Henke J, Seidl S, et al. Noninvasive characterization of myocardial molecular interventions by integrated positron emission tomography and computed tomography. J Am Coll Cardiol 2006;48:2107–15.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to D. Le Guludec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Guludec, D., Lautamäki, R., Knuuti, J. et al. Present and future of clinical cardiovascular PET imaging in Europe—a position statement by the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging 35, 1709–1724 (2008). https://doi.org/10.1007/s00259-008-0859-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0859-1

Keywords

Navigation