Skip to main content

Advertisement

Log in

Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Affibody molecules are low molecular weight proteins (7 kDa), which can be selected to bind to tumour-associated target proteins with subnanomolar affinity. Because of rapid tumour localisation and clearance from nonspecific compartments, Affibody molecules are promising tracers for molecular imaging. Earlier, 99mTc-labelled Affibody molecules demonstrated specific targeting of tumour xenografts. However, the biodistribution was suboptimal either because of hepatobiliary excretion or high renal uptake of the radioactivity. The goal of this study was to optimise the biodistribution of Affibody molecules by chelator engineering.

Materials and methods

Anti-HER2 ZHER2:342 Affibody molecules, carrying the mercaptoacetyl-glutamyl-seryl-glutamyl (maESE), mercaptoacetyl-glutamyl-glutamyl-seryl (maEES) and mercaptoacetyl-seryl-glutamyl-glutamyl (maSEE) chelators, were prepared by peptide synthesis and labelled with 99mTc. The tumour-targeting capacity of these conjugates was compared with each other and with the best previously available conjugate, 99mTc-maEEE-ZHER2:342, in nude mice bearing SKOV-3 xenografts. The tumour-targeting capacity of the most promising conjugate, 99mTc-maESE-ZHER2:342, was compared with radioiodinated ZHER2:342.

Results

All novel conjugates demonstrated successful tumour targeting and a low degree of hepatobiliary excretion. The renal uptakes of serine-containing conjugates, 33 ± 5, 68 ± 21 and 71 ± 10%IA/g, for99mTc-maESE-ZHER2:342, 99mTc-maEES-ZHER2:342 and 99mTc-maSEE-ZHER2:342, respectively, were significantly reduced in comparison with 99mTc-maEEE-ZHER2:342 (102 ± 13%IA/g). For 99mTc-maESE-ZHER2:342, a tumour uptake of 9.6 ± 1.8%IA/g and a tumour-to-blood ratio of 58 ± 6 were reached at 4 h p.i.

Conclusions

A combination of serine and glutamic acid residues in the chelator sequence confers increased renal excretion and relatively low renal uptake of 99mTc-labelled Affibody molecules. In combination with preserved targeting capacity, this improved imaging of targets in abdominal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Britz-Cunningham SH, Adelstein SJ. Molecular targeting with radionuclides: state of the science. J Nucl Med 2003;44:1945–61.

    PubMed  CAS  Google Scholar 

  2. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol 2007;34:757–78.

    Article  PubMed  CAS  Google Scholar 

  3. Behr TM, Gotthardt M, Barth A, Behe M. Imaging tumors with peptide-based radioligands. Q J Nucl Med 2001;45:189–200.

    PubMed  CAS  Google Scholar 

  4. Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol 2002;13:603–8.

    Article  PubMed  CAS  Google Scholar 

  5. Huhalov A, Chester KA. Engineered single chain antibody fragments for radioimmunotherapy. Q J Nucl Med Mol Imaging 2004;48:279–88.

    PubMed  CAS  Google Scholar 

  6. Cortez-Retamozo V, Lauwereys M, Hassanzadeh Gh G, Gobert M, Conrath K, Muyldermans S, et al. Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 2002;98:456–62.

    Article  PubMed  CAS  Google Scholar 

  7. Binz HK, Amstutz P, Pluckthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 2005;23:1257–68.

    Article  PubMed  CAS  Google Scholar 

  8. Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsen L. Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 2007;7:555–68.

    Article  PubMed  CAS  Google Scholar 

  9. Nilsson FY, Tolmachev V. Affibody molecules: new protein domains for molecular imaging and targeted tumor therapy. Curr Opin Drug Discov Devel 2007;10:167–75.

    PubMed  CAS  Google Scholar 

  10. Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B, Hoiden-Guthenberg I, et al. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 2006;66:4339–48.

    Article  PubMed  CAS  Google Scholar 

  11. Hudis CA. Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med 2007;357:39–51.

    Article  PubMed  CAS  Google Scholar 

  12. Zidan J, Dashkovsky I, Stayerman C, Basher W, Cozacov C, Hadary A. Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease. Br J Cancer 2005;93:552–6.

    Article  PubMed  CAS  Google Scholar 

  13. Tolmachev V, Nilsson FY, Widstrom C, Andersson K, Rosik D, Gedda L, et al. 111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J Nucl Med 2006;47:846–53.

    PubMed  CAS  Google Scholar 

  14. Orlova A, Tolmachev V, Pehrson R, Lindborg M, Tran T, Sandstrom M, et al. Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 2007;67:2178–86.

    Article  PubMed  CAS  Google Scholar 

  15. Orlova A, Rosik D, Sandstrom M, Lundqvist H, Einarsson L, Tolmachev V. Evaluation of [111/114mIn]CHX-A″-DTPA-ZHER2:342, an Affibody ligand conjugate for targeting of HER2-expressing malignant tumors. Q J Nucl Med Mol Imaging 2007;51:314–23.

    PubMed  CAS  Google Scholar 

  16. Orlova A, Tran T, Widstrom C, Engfeldt T, Eriksson Karlstrom A, Tolmachev V. Pre-clinical evaluation of [111In]-benzyl-DOTA-ZHER2:342, a potential agent for imaging of HER2 expression in malignant tumors. Int J Mol Med 2007;20:397–404.

    PubMed  CAS  Google Scholar 

  17. Baum R, Orlova A, Tolmachev V, Feldwisch J. Receptor PET/CT and SPECT using an Affibody molecule for targeting and molecular imaging of HER2 positive cancer in animal xenografts and human breast cancer patients. J Nucl Med (Supplement 1) 2006;47:108P.

    Google Scholar 

  18. Feldwisch J, Orlova A, Tolmachev V, Baum R. Clinical and preclinical application of HER2-specific Affibody molecules for diagnosis of recurrent HER2 positive breast cancer by SPECT or PET/CT. Mol Imaging 2006;5:215.

    Google Scholar 

  19. Friedman M, Nordberg E, Hoiden-Guthenberg I, Brismar H, Adams GP, Nilsson FY, et al. Phage display selection of Affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor. Protein Eng Des Sel 2007;20:189–99.

    Article  PubMed  CAS  Google Scholar 

  20. Nordberg E, Friedman M, Gostring L, Adams GP, Brismar H, Nilsson FY, et al. Cellular studies of binding, internalization and retention of a radiolabeled EGFR-binding affibody molecule. Nucl Med Biol 2007;34:609–18.

    Article  PubMed  CAS  Google Scholar 

  21. Engfeldt T, Orlova A, Tran T, Bruskin A, Widstrom C, Karlstrom AE, et al. Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging 2007;34:722–33.

    Article  PubMed  CAS  Google Scholar 

  22. Engfeldt T, Tran T, Orlova A, Widstrom C, Feldwisch J, Abrahmsen L, et al. 99mTc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. Eur J Nucl Med Mol Imaging 2007;34:1843–53.

    Article  PubMed  CAS  Google Scholar 

  23. Tran T, Engfeldt T, Orlova A, Sandstrom M, Feldwisch J, Abrahmsen L, et al. 99mTc-maESE-ZHER2:342, an Affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. Bioconjug Chem 2007;18:1956–64.

    Article  PubMed  CAS  Google Scholar 

  24. Engfeldt T, Renberg B, Brumer H, Nygren PA Karlstrom AE. Chemical synthesis of triple-labelled three-helix bundle binding proteins for specific fluorescent detection of unlabelled protein. Chembiochem 2005;6:1043–50.

    Article  PubMed  CAS  Google Scholar 

  25. Tran T, Engfeldt T, Orlova A, Widstrom C, Bruskin A, Tolmachev V, et al. In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumor-targeting Affibody molecules. Bioconjug Chem 2007;18:549–58.

    Article  PubMed  CAS  Google Scholar 

  26. Behr TM, Goldenberg DM, Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 1998;25:201–12.

    Article  PubMed  CAS  Google Scholar 

  27. Melis M, Krenning EP, Bernard BF, Barone R, Visser TJ, de Jong M. Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur J Nucl Med Mol Imaging 2005;32:1136–43.

    Article  PubMed  CAS  Google Scholar 

  28. de Jong M, Barone R, Krenning E, Bernard B, Melis M, Visser T, et al. Megalin is essential for renal proximal tubule reabsorption of 111In-DTPA-octreotide. J Nucl Med 2005;46:1696–700.

    PubMed  Google Scholar 

  29. Rolleman EJ, Valkema R, de Jong M, Kooij PP, Krenning EP. Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging 2003;30:9–15.

    Article  PubMed  CAS  Google Scholar 

  30. Behe M, Kluge G, Becker W, Gotthardt M, Behr TM. Use of polyglutamic acids to reduce uptake of radiometal-labeled minigastrin in the kidneys. J Nucl Med 2005;46:1012–5.

    PubMed  CAS  Google Scholar 

  31. Vegt E, Wetzels JF, Russel FG, Masereeuw R, Boerman OC, van Eerd JE, et al. Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin. J Nucl Med 2006;47:432–6.

    PubMed  CAS  Google Scholar 

  32. Gotthardt M, van Eerd-Vismale J, Oyen WJ, de Jong M, Zhang H, Rolleman E, et al. Indication for different mechanisms of kidney uptake of radiolabeled peptides. J Nucl Med 2007;48:596–601.

    Article  PubMed  CAS  Google Scholar 

  33. Bushnell D, Menda Y, O’Dorisio T, Madsen M, Miller S, Carlisle T, et al. Effects of intravenous amino acid administration with Y-90 DOTA-Phe1-Tyr3-Octreotide (SMT487[OctreoTher) treatment. Cancer Biother Radiopharm 2004;19:35–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Financial support was provided by the Swedish Cancer Society (Cancerfonden) and the Swedish Research Council (Vetenskapsrådet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Tolmachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekblad, T., Tran, T., Orlova, A. et al. Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake. Eur J Nucl Med Mol Imaging 35, 2245–2255 (2008). https://doi.org/10.1007/s00259-008-0845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0845-7

Keywords

Navigation