Skip to main content

Advertisement

Log in

Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroinflammation in a rat model of microglial activation

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Erratum to this article was published on 10 July 2008

Abstract

Background

The translocator protein (TSPO; 18 kDa), the new name of the peripheral-type benzodiazepine receptor, is localised in mitochondria of glial cells and expressed in very low concentrations in normal brain. Their expression rises after microglial activation following brain injury. Accordingly, TSPO are potential targets to evaluate neuroinflammatory changes in a variety of CNS disorders.

Purpose

To date, only a few effective tools are available to explore TSPO by SPECT. We characterised here 6-chloro-2-(4′iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide or CLINDE in a rat model with different stages of excitotoxic lesion.

Methods

Excitotoxicity was induced in male Wistar rats by unilateral intrastriatal injection of different amounts of quinolinic acid (75, 150 or 300 nmol). Six days later, two groups of rats (n = 5–6/group) were i.v. injected with [125I]-CLINDE (0.4 MBq); one group being pre-injected with PK11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography, in vitro autoradiography ([3H]-PK11195) and immunohistochemical studies (OX-42) were performed on brain sections.

Results

In the control group, [125I]-CLINDE binding was significantly higher (p < 0.001) in lesioned than that in intact side. This binding disappeared in rats pre-treated with PK11195 (p < 0.001), showing specific binding of CLINDE to TSPO. Ex vivo and in vitro autoradiographic studies and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated microglia. Regression analysis yielded a positive relation between the ligand binding and the degree of neuroinflammation.

Conclusion

These results demonstrate that CLINDE is suitable for TSPO in vivo SPECT imaging to explore their involvement in neurodegenerative disorders associated with microglial activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB, Lacapère JJ, Lindemann P, et al. Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 2006;27:402–9.

    Article  PubMed  CAS  Google Scholar 

  2. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U S A 1992;89(8):3170–4.

    Article  PubMed  CAS  Google Scholar 

  3. Jamin N, Neumann JM, Ostuni MA, Vu TK, Yao ZX, Murail S, et al. Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol Endocrinol 2005;19:588–94.

    Article  PubMed  CAS  Google Scholar 

  4. Lacapere JJ, Papadopoulos V. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids 2003;68:569–85.

    Article  PubMed  CAS  Google Scholar 

  5. Sutter AP, Maaser K, Hopfner M, Barthel B, Grabowski P, Faiss S, et al. Specific ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in human oesophageal cancer cells. Int J Cancer 2002;102(4):318–27.

    Article  PubMed  CAS  Google Scholar 

  6. Benavides J, Quarteronet D, Imbault F, Malgouris C, Uzan A, Renault C, et al. Labelling of “peripheral-type” benzodiazepine binding sites in the rat brain by using [3H]PK11195, an isoquinoline carboxamide derivative: kinetic studies and autoradiographic localization. J Neurochem 1983;41(6):1744–50.

    Article  PubMed  CAS  Google Scholar 

  7. Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK11195. Neurology 2000;55(7):1052–4.

    PubMed  CAS  Google Scholar 

  8. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001;358(9280):461–7.

    Article  PubMed  CAS  Google Scholar 

  9. Papadopoulos V, Lecanu L, Brown RC, Han Z, Yao ZX. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders. Neuroscience 2006;138(3):749–56.

    Article  PubMed  CAS  Google Scholar 

  10. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer FE, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123:2321–37.

    Article  PubMed  Google Scholar 

  11. Messmer K, Reynolds GP. Increased peripheral benzodiazepine binding sites in the brain of patients with Huntington's disease. Neurosci Lett 1998;241(1):53–6.

    Article  PubMed  CAS  Google Scholar 

  12. Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, Brooks DJ, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 2004;15(3):601–9.

    Article  PubMed  CAS  Google Scholar 

  13. Benavides J, Fage D, Carter C, Scatton B. Peripheral type benzodiazepine binding sites are a sensitive indirect index of neuronal damage. Brain Res 1987;421(1–2):167–72.

    Article  PubMed  CAS  Google Scholar 

  14. Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol 2006;80(6):308–22.

    Article  PubMed  CAS  Google Scholar 

  15. Vowinckel E, Reutens D, Becher B, Verge G, Evans A, Owens T, et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res 1997;50(2):345–53.

    Article  PubMed  CAS  Google Scholar 

  16. Dumont F, De Vos F, Versijpt J, Jansen HM, Korf J, Dierckx RA, et al. In vivo evaluation in mice and metabolism in blood of human volunteers of [123I]iodo-PK11195: a possible single-photon emission tomography tracer for visualization of inflammation. Eur J Nucl Med 1999;26(3):194–200.

    Article  PubMed  CAS  Google Scholar 

  17. Shah F, Hume SP, Pike VW, Ashworth S, McDermott J. Synthesis of the enantiomers of [N-methyl-11C]PK11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol 1994;21:573–81.

    Article  PubMed  CAS  Google Scholar 

  18. Belloli S, Moresco RM, Matarrese M, Biella G, Sanvito F, Simonelli P, et al. Evaluation of three quinoline-carboxamide derivatives as potential radioligands for the in vivo PET imaging of neurodegeneration. Neurochem Int 2004;44(6):433–40.

    Article  PubMed  CAS  Google Scholar 

  19. Kropholler MA, Boellaard R, Schuitemaker A, van Berckel BN, Luurtsema G, Windhorst AD, et al. Development of a tracer kinetic plasma input model for (R)-[11C]PK11195 brain studies. J Cereb Blood Flow Metab 2005;25(7):842–51.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang MR, Kumata K, Maeda J, Haradahira T, Noguchi J, Suhara T, et al. N-(5-fluoro-2-phenoxyphenyl)-N-(2-[131I]iodo-5-methoxybenzyl)acetamide: a potent iodinated radioligand for the peripheral-type benzodiazepine receptor in brain. J Med Chem 2007;50:848–55.

    Article  PubMed  CAS  Google Scholar 

  21. Boutin H, Chauveau F, Thominiaux C, Grégoire MC, James ML, Trebossen R, et al. 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med 2007;48(4):573–81.

    Article  PubMed  CAS  Google Scholar 

  22. Boutin H, Chauveau F, Thominiaux C, Kuhnast B, Grégoire MC, Jan S, et al. In vivo imaging of brain lesions with [11C]CLINME, a new PET radioligand of peripheral benzodiazepine receptors. Glia 2007;55:1459–68.

    Article  PubMed  Google Scholar 

  23. Gulyas B, Halldin C, Vas A, Banati RB, Schukin E, Finnema S, et al. [11C]vinpocetine: a prospective peripheral benzodiazepine receptor ligand for primate PET studies. J Neurol Sci 2005;229–230:219–23.

    Article  PubMed  Google Scholar 

  24. Mattner F, Mardon K, Katsifis A. Pharmacological evaluation of [123I]-CLINDE: a radioiodinated imidazopyridine-3-acetamide for the study of peripheral benzodiazepine binding sites (PBBS). Eur J Nucl Med Mol Imaging 2008;35:779–89.

    Article  PubMed  CAS  Google Scholar 

  25. Mattner F, Katsifis A, Staykova M, Ballantyne P, Willenborg DO. Evaluation of a radiolabelled peripheral benzodiazepine receptor ligand in the central nervous system inflammation of experimental autoimmune encephalomyelitis: a possible probe for imaging multiple sclerosis. Eur J Nucl Med Mol Imaging 2005;32(5):557–63.

    Article  PubMed  CAS  Google Scholar 

  26. Li L, Fan M, Icton CD, Chen N, Leavitt BR, Hayden MR. Role of NR2B-type NMDA receptors in selective neurodegeneration in Huntington’s disease. Neurobiol Aging 2003;24(8):1113–21.

    Article  PubMed  CAS  Google Scholar 

  27. Katsifis A, Mattner F, Dikic B, Papazian V. Synthesis of substituted [123I]imidazo[1,2-a]pyridines as potential probes for the study of the peripheral benzodiazepine receptors using SPECT. Radiochim Acta 2000;88(3–4):229–32.

    Article  CAS  Google Scholar 

  28. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. New York: Academic; 1986.

    Google Scholar 

  29. Robinson AP, White TM, Mason DW. Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies, MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 1986;57:239–47.

    PubMed  CAS  Google Scholar 

  30. Ryu JK, Choi HB, Mc Larnon JG. Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol Dis 2005;20:550–61.

    Article  PubMed  CAS  Google Scholar 

  31. Chalon S, Pellevoisin C, Bodard S, Vilar MP, Besnard JC, Guilloteau D. Iodinated PK-11195 as an ex vivo marker of neuronal injury in the lesioned rat brain. Synapse 1996;24:334–39.

    Article  PubMed  CAS  Google Scholar 

  32. Price GW, Ahier RG, Hume SP, Myers R, Manjil L, Cremer JE, et al. In vivo binding to peripheral benzodiazepine binding sites in lesioned rat brain: comparison between [3H]PK11195 and [18F]PK14105 as markers for neuronal damage. J Neurochem 1990;55:175–85.

    Article  PubMed  CAS  Google Scholar 

  33. Doble A, Ferris O, Burgevin MC, Menager J, Uzan A, Dubroeucq MC, et al. Photoaffinity labelling of peripheral-type benzodiazepine-binding sites. Mol Pharmacol 1987;31:42–9.

    PubMed  CAS  Google Scholar 

  34. Schwarcz R, Whetsell WO Jr, Mangano RM. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 1983;219(4582):316–8.

    Article  PubMed  CAS  Google Scholar 

  35. Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 1986;321:168–71.

    Article  PubMed  CAS  Google Scholar 

  36. Katsifis A, Mattner F, Mardon K, Papazian V, Dikic B. Synthesis and evaluation of [123I]imidazo[1,2-a]pyridines as potential probes for the study of the peripheral benzodiazepine receptors using SPECT. J Nucl Med 1998;39(5):50.

    Google Scholar 

  37. Mattner F, Papazian V, Chapman J, Katsifis A. Ex vivo pharmacological evaluation of the peripheral benzodiazepine receptor radioligand [123I]-CLINDE in animal tumour models. J Lab Comp Radiopharm 2003;46:S9.

    Google Scholar 

  38. Katsifis A, Mattner F, Chapman J, Izard B, Papazian V, Dikic B, et al. Synthesis and evaluation of [123I]-labelled peripheral benzodiazepine receptor ligands in tumour bearing rodents. Eur J Nucl Med Mol Imaging 2002;29:S163.

    Article  Google Scholar 

  39. Venneti S, Lopresti BJ, Wang G, Slagel SL, Mason NS, Mathis CA, et al. A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 2007;102:2118–31.

    Article  PubMed  CAS  Google Scholar 

  40. James ML, Fulton RR, Henderson DJ, Eberl S, Meikle SR, Thomson S, et al. Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand. Bioorg Med Chem 2005;13(22):6188–94.

    Article  PubMed  CAS  Google Scholar 

  41. Fujimura Y, Ikoma Y, Yasuno F, Suhara T, Ota M, Matsumoto R, et al. Quantitative analyses of 18F-FEDAA1106 binding to peripheral benzodiazepine receptors in living human brain. J Nucl Med 2006;47:43–50.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

All studies were conducted according to the French legislation and European directives. This work was financially supported in part by the EC-FP6-project DiMI, LSHB-CT-2005-512146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Chalon.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00259-008-0882-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arlicot, N., Katsifis, A., Garreau, L. et al. Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroinflammation in a rat model of microglial activation. Eur J Nucl Med Mol Imaging 35, 2203–2211 (2008). https://doi.org/10.1007/s00259-008-0834-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0834-x

Keywords

Navigation