Skip to main content

Advertisement

Log in

EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy

  • Guidelines
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Introduction

The purpose of the EANM Dosimetry Committee Series on “Standard Operational Procedures for Pre-therapeutic Dosimetry” (SOP) is to provide advice to scientists and clinicians on how to perform pre-therapeutic and/or therapeutic patient-specific absorbed dose assessments.

Material and Methods

This particular SOP gives advice on how to tailor the therapeutic activity to be administered for systemic treatment of differentiated thyroid cancer (DTC) such that the absorbed dose to the blood does not exceed 2 Gy (a widely accepted limit for bone marrow toxicity). The methodology of blood-based dosimetry has been developed in the 1960s and refined in a series of international multi-centre trials in the framework of the introduction of new diagnostic and therapeutic tools, e.g. recombinant human thyroid-stimulating hormone in the management of DTC.

Conclusion

The intention is to guide the user through a series of measurements and calculations which the authors consider to be the best and most reproducible way at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benua RS, Cicale NR, Sonenberg M, Rawson RW. Relation of radioiodine dosimetry to results and complications in treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 1962;87:171–82.

    PubMed  CAS  Google Scholar 

  2. Benua RS, Leeper RD. A method and rationale for treating metastatic thyroid carcinoma with the largest safe dose of I-131. Frontiers in thyroidology, vol 2. New York: Plenum Medical; 1986. p. 1317–21.

    Google Scholar 

  3. Luster M, Sherman SI, Skarulis MC, Reynolds JR, Lassmann M, Hänscheid H, et al. Comparison of radioiodine biokinetics following the administration of recombinant human thyroid stimulating hormone and after thyroid hormone withdrawal in thyroid carcinoma. Eur J Nucl Med Mol Imaging 2003;30:1371–7.

    Article  PubMed  CAS  Google Scholar 

  4. Hänscheid H, Lassmann M, Luster M, Thomas SR, Pacini F, Ceccarelli C, et al. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med 2006;47:648–54.

    PubMed  Google Scholar 

  5. Schlumberger M, Pacini F. Thyroid tumors. 5th ed. Paris: Editions Nucléon; 2003.

    Google Scholar 

  6. Schober O, Gunter HH, Schwarzrock R, Hundeshagen H. Long-term hematologic changes caused by radioiodine treatment of thyroid cancer I. Peripheral blood changes. Strahlenther Onkol 1987;163:464–74.

    PubMed  CAS  Google Scholar 

  7. Gunter HH, Schober O, Schwarzrock R, Hundeshagen H. Long-term hematologic changes caused by radioiodine treatment of thyroid cancer. II. Bone marrow changes including leukemia. Strahlenther Onkol 1987;163:475–85.

    PubMed  CAS  Google Scholar 

  8. Van Nostrand D, Atkins F, Yeganeh F, Acio E, Bursaw R, Wartofsky L. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid. 2002;12:121–14.

    Article  PubMed  Google Scholar 

  9. Kolbert KS, Pentlow KS, Pearson JR, Sheikh A, Finn RD, Humm JL, et al. Prediction of absorbed dose to normal organs in thyroid cancer patients treated with 131I by use of 124I PET and 3-dimensional internal dosimetry software. J Nucl Med 2007;48:143–9.

    PubMed  CAS  Google Scholar 

  10. Sgouros G. Blood and bone marrow dosimetry in radioiodine therapy of thyroid cancer. J Nucl Med 2005;46:899–900.

    PubMed  Google Scholar 

  11. Tuttle RM, Leboeuf R, Robbins RJ, Qualey R, Pentlow K, Larson SM, et al. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med 2006;47:1587–91.

    PubMed  Google Scholar 

  12. Samuel AM, Rajashekharrao B, Shah DH. Pulmonary metastases in children and adolescents with well-differentiated thyroid cancer. J Nucl Med 1998;39:1531–6.

    PubMed  CAS  Google Scholar 

  13. Medvedec M. Thyroid stunning in vivo and in vitro. Nucl Med Commun 2005;26:731–5.

    Article  PubMed  Google Scholar 

  14. Lassmann M, Luster M, Hänscheid H, Reiners C. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med 2004;4:619–25.

    Google Scholar 

  15. Sgouros G, Song H, Ladenson PW, Wahl RL. Lung toxicity in radioiodine therapy of thyroid carcinoma: development of a dose-rate method and dosimetric implications of the 80-mCi rule. J Nucl Med 2006;47:1977–84.

    PubMed  CAS  Google Scholar 

  16. Song H, Prideaux A, Du Y, Frey E, Kasecamp W, Ladenson PW, et al. Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases. J Nucl Med 2006;47:1985–94.

    PubMed  CAS  Google Scholar 

  17. International Commission on Radiological Protection. ICRP publication 53: Radiation dose to patients from radiopharmaceuticals. Annals of the ICRP, vol 18. Oxford: Pergamon; 1994.

    Google Scholar 

  18. Chittenden SJ, Pratt BE, Pomeroy K, Black P, Long C, Smith N, et al. Optimization of equipment and methodology for whole body activity retention measurements in children undergoing targeted radionuclide therapy. Cancer Biother Radiopharm 2007;22:243–9.

    Article  PubMed  Google Scholar 

  19. Akabani G, Poston JW Sr. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides. J Nucl Med 1991;32:830–4.

    PubMed  CAS  Google Scholar 

  20. Loevinger R, Holt JG, Hine JG. Internally administered radioisotopes. In: Hine JG, Brownell GL, editors. Radiation dosimetry. New York: Academic; 1956. p. 803–75.

    Google Scholar 

  21. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46:1023–7.

    PubMed  Google Scholar 

  22. Leeper RD. The effect of 131I therapy on survival of patients with metastatic papillary or follicular thyroid carcinoma. J Clin Endocrinol Metab 1973;36:1143–52.

    Article  PubMed  CAS  Google Scholar 

  23. Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med 1993;34:689–94.

    PubMed  CAS  Google Scholar 

  24. Chiesa C, De Agostini A, Ferrari M, Pedroli G, Savi A, Traino AC, et al. Dosimetria nella terapia medico nucleare del carcinoma tiroideo metastatico differenziato: calcolo della dose al midollo emopoietico. Notiziario Associazione Italiana Fisica in Medicina 2006;4:299–307.

    Google Scholar 

  25. Traino AC, Ferrari M, Cremonesi M, Stabin MG. Influence of total-body mass on the scaling of S-factors for patient-specific, blood-based red-marrow dosimetry. Phys Med Biol 2007;52:5231–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was developed under the close supervision of the Dosimetry Committee of the EANM (M Bardiès, C Chiesa, G Flux, S-E Strand, S Savolainen, M Monsieurs and M Lassmann).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lassmann.

Additional information

Michael Lassmann, Carlo Chiesa and Glenn Flux are members of the EANM Dosimetry Committee.

Markus Luster is a member of the EANM Therapy Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassmann, M., Hänscheid, H., Chiesa, C. et al. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 35, 1405–1412 (2008). https://doi.org/10.1007/s00259-008-0761-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0761-x

Keywords

Navigation