Skip to main content

Advertisement

Log in

[18F]Fluorinated estradiol derivatives for oestrogen receptor imaging: impact of substituents, formulation and specific activity on the biodistribution in breast tumour-bearing mice

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The biodistribution and tumour uptake of a series of 16α-[18F]fluoroestradiol ([18F]FES) derivatives was determined in oestrogen receptors-positive (ER+) tumour-bearing mice to assess the impact of substituents, formulation and specific activity on target tissue uptake.

Methods

MC4-L2 and MC7-L1 murine ER+ cells were inoculated in Balb/c mice. The animals were injected with various [18F]FES derivatives substituted with 2- or 4-fluorine and/or an 11β-methoxy group. The radiopharmaceuticals were formulated in 10% ethanol/saline or 10% ethanol/lipid emulsion. The organs were counted, and radioactivity concentrations were expressed as the percentage of the injected dose per gram tissue (%ID/g). To estimate the effect of specific activity on tumour uptake, the 4-fluoro-11β-methoxy-16α-[18F]-fluoroestradiol (4F-M[18F]FES) was co-injected with different concentrations of non-radioactive estradiol to give an in vivo competitive inhibition curve.

Results

4F-M[18F]FES exhibited the highest average uterine uptake (%ID/g = 15.7 ± 2.1). The highest uptake by the two mammary tumours was observed with [18F]FES (%ID/g = 3.1 and 3.4 ± 0.3) and 11β-methoxy-16α[18F]-fluoroestradiol (M-[18F]FES) (%ID/g = 3.2 and 3.3 ± 0.6), followed by 4F-M[18F]FES (%ID/g = 2.5 and 2.3 ± 0.3). The formulation had little influence on the biodistribution pattern. Co-injection with a total mass of estradiol >10−10 mol blocked 4F-M[18F]FES tumour uptake.

Conclusion

All of the radiolabelled estradiol derivatives achieved significant target tissue uptake in vivo, both in ER+ tumours and the uterus. The formulation had little impact on the biodistribution of these compounds but some compounds (4F-M[18F]FES, M-[18F]FES and [18F]FES) had more favourable target tissue uptake and target-to-background ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fisher B, Osborne K, Margolese R, Bloomer W. Neoplasms of the breast. In: Holland J, Blast R, Morton D, Frei E, Kuge D, Weichselbaum R, editors. Cancer medicine. vol 1. 4th ed. Baltimore: Williams & Wilkins; 1997. p. 2349–429.

    Google Scholar 

  2. Campbell FC, Blamey RW, Elston CW, Morris AH, Nicholson RI, Griffiths K, et al. Quantitative oestradiol receptor values in primary breast cancer and response of metastases to endocrine therapy. Lancet. 1981;2:1317–9.

    Article  PubMed  CAS  Google Scholar 

  3. Benard F, Turcotte E. Imaging in breast cancer: single-photon computed tomography and positron-emission tomography. Breast Cancer Res. 2005;7:153–62.

    Article  PubMed  CAS  Google Scholar 

  4. Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005;23:1616–22.

    Article  PubMed  CAS  Google Scholar 

  5. Beauregard J, Turcotte E, Bénard F. Steroid receptor imaging in breast cancer. PET Clin North Am. 2006;1:51–70.

    Google Scholar 

  6. Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA, Welch MJ. Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med. 1984;25:1212–21.

    PubMed  CAS  Google Scholar 

  7. Linden HM, Stekhova SA, Link JM, Gralow JR, Livingston RB, Ellis GK, et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol. 2006;24:2793–9.

    Article  PubMed  CAS  Google Scholar 

  8. Mankoff DA, Tewson TJ, Eary JF. Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16 alpha-fluoroestradiol (FES). Nucl Med Biol. 1997;24:341–8.

    Article  PubMed  CAS  Google Scholar 

  9. Ali H, Rousseau J, van Lier JE. 7 alpha-Methyl- and 11 beta-ethoxy-substitution of [125I]-16 alpha-iodoestradiol: effect on estrogen receptor-mediated target tissue uptake. J Med Chem. 1993;36:264–71.

    Article  PubMed  CAS  Google Scholar 

  10. Pomper MG, VanBrocklin H, Thieme AM, et al. 11 beta-methoxy-, 11 beta-ethyl- and 17 alpha-ethynyl-substituted 16 alpha-fluoroestradiols: receptor-based imaging agents with enhanced uptake efficiency and selectivity. J Med Chem. 1990;33:3143–55.

    Article  PubMed  CAS  Google Scholar 

  11. Seimbille Y, Ali H, van Lier JE. Synthesis of 2,16 alpha- and 4,16 alpha-difluoroestradiols and their 11 beta-methoxy derivatives as potential estrogen receptor-binding radiopharmaceuticals. J Chem Soc Perk T. 2002;1:657–63.

    Google Scholar 

  12. Seimbille Y, Rousseau J, Benard F, Morin C, Ali H, Avvakumov G, et al. 18F-labeled difluoroestradiols: preparation and preclinical evaluation as estrogen receptor-binding radiopharmaceuticals. Steroids. 2002;67:765–75.

    Article  PubMed  CAS  Google Scholar 

  13. Katzenellenbogen JA, Mathias CJ, VanBrocklin HF, Brodack JW, Welch MJ. Titration of the in vivo uptake of 16 alpha-[18F]fluoroestradiol by target tissues in the rat: competition by tamoxifen, and implications for quantitating estrogen receptors in vivo and the use of animal models in receptor-binding radiopharmaceutical development. Nucl Med Biol. 1993;20:735–45.

    Article  PubMed  CAS  Google Scholar 

  14. Lim JL, Zheng L, Berridge MS, Tewson TJ. The use of 3-methoxymethyl-16 beta, 17 beta-epiestriol-O-cyclic sulfone as the precursor in the synthesis of F-18 16 alpha-fluoroestradiol. Nucl Med Biol. 1996;23:911–5.

    Article  PubMed  CAS  Google Scholar 

  15. Beauregard J, Croteau E, Ahmed N, Ouellette R, Van Lier J, Bénard F. A simple method for effective specific activity determination of estrogen receptor-binding radiopharmaceuticals. Nucl Med Biol. 2007;34:325–9.

    Article  PubMed  CAS  Google Scholar 

  16. Lanari C, Luthy I, Lamb CA, Fabris V, Pagano E, Helguero LA, et al. Five novel hormone-responsive cell lines derived from murine mammary ductal carcinomas: in vivo and in vitro effects of estrogens and progestins. Cancer Res. 2001;61:293–302.

    PubMed  CAS  Google Scholar 

  17. Aliaga A, Rousseau JA, Ouellette R, Cadorette J, van Lier JE, Lecomte R, et al. Breast cancer models to study the expression of estrogen receptors with small animal PET imaging. Nucl Med Biol. 2004;31:761–70.

    Article  PubMed  CAS  Google Scholar 

  18. Jonson SD, Bonasera TA, Dehdashti F, Cristel ME, Katzenellenbogen JA, Welch MJ. Comparative breast tumor imaging and comparative in vitro metabolism of 16alpha-[18F]fluoroestradiol-17beta and 16beta-[18F]fluoromoxestrol in isolated hepatocytes. Nucl Med Biol. 1999;26:123–30.

    Article  PubMed  CAS  Google Scholar 

  19. Janne M, Hogeveen KN, Deol HK, Hammond GL. Expression and regulation of human sex hormone-binding globulin transgenes in mice during development. Endocrinology. 1999;140:4166–74.

    Article  PubMed  CAS  Google Scholar 

  20. Janne M, Deol HK, Power SG, Yee SP, Hammond GL. Human sex hormone-binding globulin gene expression in transgenic mice. Mol Endocrinol. 1998;12:123–36.

    Article  PubMed  CAS  Google Scholar 

  21. Fortunati N, Raineri M, Cignetti A, Hammond GL, Frairia R. Control of the membrane sex hormone-binding globulin-receptor (SHBG-R) in MCF-7 cells: effect of locally produced SHBG. Steroids. 1998;63:282–4.

    Article  PubMed  CAS  Google Scholar 

  22. Nachar O, Rousseau JA, Ouellet R, Rioux A, Lefebvre B, Ali H, et al. Scintimammography with 11beta-methoxy-(17alpha,20Z)-[123I]iodovinylestrad iol: a complementary role to 99mTc-methoxyisobutyl isonitrile in the characterization of breast tumors. J Nucl Med. 2000;41:1324–31.

    PubMed  CAS  Google Scholar 

  23. Bennink RJ, van Tienhoven G, Rijks LJ, Noorduyn AL, Janssen AG, Sloof GW. In vivo prediction of response to antiestrogen treatment in estrogen receptor-positive breast cancer. J Nucl Med. 2004;45:1–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Canadian Breast Cancer Research Alliance (CBCRA) grant 015388 and a “Fonds de la recherche en santé du Québec” scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bénard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bénard, F., Ahmed, N., Beauregard, JM. et al. [18F]Fluorinated estradiol derivatives for oestrogen receptor imaging: impact of substituents, formulation and specific activity on the biodistribution in breast tumour-bearing mice. Eur J Nucl Med Mol Imaging 35, 1473–1479 (2008). https://doi.org/10.1007/s00259-008-0745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0745-x

Keywords

Navigation