Skip to main content
Log in

[11C]Choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The accuracy of positron emission tomography (PET)/CT with [11C]choline for the detection of prostate cancer is not well established. We assessed the dependence of [11C]choline maximum standardized uptake values (SUVmax) in the prostate gland on cell malignancy, prostate-specific antigen (PSA) levels, Gleason score, tumour stage and anti-androgenic hormonal therapy.

Methods

In this prospective study, PET/CT with [11C]choline was performed in 19 prostate cancer patients who subsequently underwent prostatectomy with histologic sextant analysis (group A) and in six prostate cancer patients before and after anti-androgenic hormonal therapy (bicalutamide 150 mg/day; median treatment of 4 months; group B).

Results

In group A, based on a sextant analysis with a [11C]choline SUVmax cutoff of 2.5 (as derived from a receiver-operating characteristic analysis), PET/CT showed sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 72, 43, 64, 51 and 60%, respectively. In the patient-by-patient analysis, no significant correlation was detected between SUVmax and PSA levels, Gleason score or pathological stage. On the contrary, a significant (P < 0.05) negative correlation was detected between SUVmax and anti-androgenic therapy both in univariate (r 2 = 0.24) and multivariate (r 2 = 0.48) analyses. Prostate [11C]choline uptake after bicalutamide therapy significantly (P < 0.05) decreased compared to baseline (6.4 ± 4.6 and 11.8 ± 5.3, respectively; group B).

Conclusion

PET/CT with [11C]choline is not suitable for the initial diagnosis and local staging of prostate cancer. PET/CT with [11C]choline could be used to monitor the response to anti-androgenic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zeisel SH. Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr 1981;1:95–121.

    Article  PubMed  CAS  Google Scholar 

  2. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology 1996;198:795–805.

    PubMed  Google Scholar 

  3. Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 2001;61:3599–603.

    PubMed  Google Scholar 

  4. Ramirez de Molina A, Rodriguez-Gonzalez A, Gutierrez R, Martinez-Pineiro L, Sanchez J, Bonilla F, et al. Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem Biophys Res Commun 2002;296:580–3.

    Article  PubMed  CAS  Google Scholar 

  5. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 1998;39:990–5.

    PubMed  CAS  Google Scholar 

  6. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Visualization of prostate cancer with [11C]choline positron emission tomography. Eur Urol 2002;42:18–23.

    Article  PubMed  Google Scholar 

  7. Kotzerke J, Prang J, Neumaier B, Volkmer B, Guhlmann A, Kleinschmidt K, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 2000;27:1415–9.

    Article  PubMed  CAS  Google Scholar 

  8. Roivainen A, Forsback S, Gronroos T, Lehikoinen P, Kahkonen M, Sutinen E, et al. Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med 2000;27:25–2.

    Article  PubMed  CAS  Google Scholar 

  9. Picchio M, Messa C, Landoni C, Gianolli L, Sironi S, Brioschi M, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 2003;169:1337–40.

    Article  PubMed  CAS  Google Scholar 

  10. Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T. [11C]choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 2005;74:214–20.

    Article  PubMed  CAS  Google Scholar 

  11. Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, et al. Imaging prostate cancer with [11C]choline PET/CT. J Nucl Med 2006;47:1249–54.

    PubMed  CAS  Google Scholar 

  12. Scher B, Seitz M, Albinger W, Tiling R, Scherr M, Becker HC, et al. Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 2007;34:45–53.

    Article  PubMed  Google Scholar 

  13. Sutinen E, Nurmi M, Roivainen A, Varpula M, Tolvanen T, Lehikoinen P, et al. Kinetics of [11C]choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 2004;31:317–24.

    Article  PubMed  CAS  Google Scholar 

  14. Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 2005;235:623–8.

    Article  PubMed  Google Scholar 

  15. Kwee SA, Coel MN, Lim J, Ko JP. Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol 2005;173:252–5.

    Article  PubMed  Google Scholar 

  16. Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, et al. Detection and localization of prostate cancer: correlation of [11C]choline PET/CT with histopathologic step-section analysis. J Nucl Med 2005;46:1642–9.

    PubMed  CAS  Google Scholar 

  17. Tyrrell CJ, Payne H, See WA, McLeod DG, Wirth MP, Iversen P, et al. Bicalutamide (‘Casodex’) 150 mg as adjuvant to radiotherapy in patients with localised or locally advanced prostate cancer: results from the randomised Early Prostate Cancer Programme. Radiother Oncol 2005;76:4–10.

    Article  PubMed  CAS  Google Scholar 

  18. Fluchter SH, Weiser R, Gamper C. The role of hormonal treatment in prostate cancer. Recent results. Cancer Res 2007;175:211–37.

    Google Scholar 

  19. Steuber T, Erbersdobler A, Graefen M, Haese A, Huland H, Karakiewicz PI. Comparative assessment of the 1992 and 2002 pathologic T3 substages for the prediction of biochemical recurrence after radical prostatectomy. Cancer 2006;106:775–82.

    Article  PubMed  Google Scholar 

  20. Namiki K, Rosser CJ. Neoadjuvant therapy and prostate cancer: what a urologist should know. Curr Opin Urol 2007;17:188–93.

    Article  PubMed  Google Scholar 

  21. Martorana G, Schiavina R, Corti B, Farsad M, Salizzoni E, Brunocilla E, et al. [11C]choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol 2006;176:954–60.

    Article  PubMed  CAS  Google Scholar 

  22. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-Fluorocholine PET. J Nucl Med 2006;47:262–9.

    PubMed  Google Scholar 

  23. Okotie OT, Aronson WJ, Wieder JA, Liao Y, Dorey F, De KJ, et al. Predictors of metastatic disease in men with biochemical failure following radical prostatectomy. J Urol 2004;171:2260–4.

    Article  PubMed  Google Scholar 

  24. Chybowski FM, Keller JJ, Bergstralh EJ, Oesterling JE. Predicting radionuclide bone scan findings in patients with newly diagnosed, untreated prostate cancer: prostate specific antigen is superior to all other clinical parameters. J Urol 1991;145:313–8.

    PubMed  CAS  Google Scholar 

  25. Kausik SJ, Blute ML, Sebo TJ, Leibovich BC, Bergstralh EJ, Slezak J, et al. Prognostic significance of positive surgical margins in patients with extraprostatic carcinoma after radical prostatectomy. Cancer 2002;95:1215–9.

    Article  PubMed  Google Scholar 

  26. Epstein JI, Carmichael MJ, Pizov G, Walsh PC. Influence of capsular penetration on progression following radical prostatectomy: a study of 196 cases with long-term followup. J Urol 1993;150:135–41.

    PubMed  CAS  Google Scholar 

  27. Breeuwsma AJ, Pruim J, Jongen MM, Suurmeijer AJ, Vaalburg W, Nijman RJ, et al. In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging 2005;32:668–73.

    Article  PubMed  Google Scholar 

  28. Yamaguchi T, Lee J, Uemura H, Sasaki T, Takahashi N, Oka T, et al. Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 2005;32:742–8.

    Article  PubMed  CAS  Google Scholar 

  29. Oyama N, Akino H, Suzuki Y, Kanamaru H, Ishida H, Tanase K, et al. FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun 2001;22:963–9.

    Article  PubMed  CAS  Google Scholar 

  30. Oyama N, Kim J, Jones LA, Mercer NM, Engelbach JA, Sharp TL, et al. MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model. Nucl Med Biol 2002;29:783–90.

    Article  PubMed  CAS  Google Scholar 

  31. Oyama N, Ponde DE, Dence C, Kim J, Tai YC, Welch MJ. Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med 2004;45:519–25.

    PubMed  CAS  Google Scholar 

  32. Hara T, Bansal A, DeGrado TR. Effect of hypoxia on the uptake of [methyl-3H]choline, [1–14C] acetate and [18F]FDG in cultured prostate cancer cells. Nucl Med Biol 2006;33:977–84.

    Article  PubMed  CAS  Google Scholar 

  33. Nakashima J, Imai Y, Tachibana M, Baba S, Hiramatsu K, Murai M. Effects of endocrine therapy on the primary lesion in patients with prostate carcinoma as evaluated by endorectal magnetic resonance imaging. Cancer 1997;80:237–41.

    Article  PubMed  CAS  Google Scholar 

  34. Padhani AR, MacVicar AD, Gapinski CJ, Dearnaley DP, Parker GJ, Suckling J, et al. Effects of androgen deprivation on prostatic morphology and vascular permeability evaluated with MR imaging. Radiology 2001;218:365–74.

    PubMed  CAS  Google Scholar 

  35. Hellstrom M, Haggman M, Brandstedt S, de la Torre M, Pedersen K, Jarlsfeldt I, et al. Histopathological changes in androgen-deprived localized prostatic cancer. A study in total prostatectomy specimens. Eur Urol 1993;24:461–5.

    PubMed  CAS  Google Scholar 

  36. Mueller-Lisse UG, Swanson MG, Vigneron DB, Hricak H, Bessette A, Males RG, et al. Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonance imaging and 3D magnetic resonance spectroscopic imaging. Magn Reson Med 2001;46:49–57.

    Article  PubMed  CAS  Google Scholar 

  37. Davoodpour P, Bergstrom M, Landstrom M. Effects of 2-methoxyestradiol on proliferation, apoptosis and PET-tracer uptake in human prostate cancer cell aggregates. Nucl Med Biol 2004;31:867–74.

    Article  PubMed  CAS  Google Scholar 

  38. Swinnen JV, Verhoeven G. Androgens and the control of lipid metabolism in human prostate cancer cells. J Steroid Biochem Mol Biol 1998;65:191–8.

    Article  PubMed  CAS  Google Scholar 

  39. Agus DB, Golde DW, Sgouros G, Ballangrud A, Cordon-Cardo C, Scher HI. Positron emission tomography of a human prostate cancer xenograft: association of changes in deoxyglucose accumulation with other measures of outcome following androgen withdrawal. Cancer Res 1998;58:3009–14.

    PubMed  CAS  Google Scholar 

  40. Yoshimoto M, Waki A, Obata A, Furukawa T, Yonekura Y, Fujibayashi Y. Radiolabeled choline as a proliferation marker: comparison with radiolabeled acetate. Nucl Med Biol 2004;31:859–65.

    Article  PubMed  CAS  Google Scholar 

  41. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Preoperative staging of pelvic lymph nodes in prostate cancer by [11C]choline PET. J Nucl Med 2003;44:331–5.

    PubMed  Google Scholar 

  42. Partin AW, Pearson JD, Landis PK, Carter HB, Pound CR, Clemens JQ, et al. Evaluation of serum prostate-specific antigen velocity after radical prostatectomy to distinguish local recurrence from distant metastases. Urology 1994;43:649–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Messa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovacchini, G., Picchio, M., Coradeschi, E. et al. [11C]Choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35, 1065–1073 (2008). https://doi.org/10.1007/s00259-008-0716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0716-2

Keywords

Navigation