Skip to main content

Advertisement

Log in

Whole body [11C]-dihydrotetrabenazine imaging of baboons: biodistribution and human radiation dosimetry estimates

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Vesicular monoamine transporter type 2 abundance quantified using the radiotracer [11C]-dihydrotetrabenazine (DTBZ) has been used to study diagnosis and pathogenesis of dementia and psychiatric disorders in humans. In addition, it may be a surrogate marker for insulin-producing pancreatic beta cell mass, useful for longitudinal measurements using positron emission tomography to track progression of autoimmune diabetes. To support the feasibility of long-term repeated administrations, we estimate the biodistribution and dosimetry of [11C]-DTBZ in humans.

Methods

Five baboon studies were acquired using a Siemens ECAT camera. After transmission scanning, 165-210 MBq of [11C]-DTBZ were injected, and dynamic whole body emission scans were conducted. Time-activity data were used to obtain residence times and estimate absorbed radiation dose according to the MIRD model.

Results

Most of the injected tracer localized to the liver and the lungs, followed by the intestines, brain, and kidneys. The highest estimated absorbed radiation dose was in the stomach wall.

Conclusions

The largest radiation dose from [11C]-DTBZ is to the stomach wall. This dose estimate, as well as the radiation dose to other radiosensitive organs, must be considered in evaluating the risks of multiple administrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Parsons S. Transport mechanisms in acetylcholine and monoamine storage. FASEB J 2000;14:2423-34.

    Article  CAS  PubMed  Google Scholar 

  2. De La Fuente-Fernandez R, Furtado S, Guttman M, Furukawa Y, Lee CS, Calne DB, et al. VMAT2 binding is elevated in dopa-responsive dystonia: visualizing empty vesicles by PET. Synapse 2003;49:20-3.

    Article  PubMed  Google Scholar 

  3. Little KY, Krolewski DM, Zhang L, Cassin BJ. Loss of striatal vesicular monoamine transporter protein (VMAT2) in human cocaine users. Am J Psychiatry 2003;160:47-55.

    Article  PubMed  Google Scholar 

  4. Riddle EL, Topham MK, Haycock JW, Hanson GR, Fleckenstein AE. Differential trafficking of the vesicular monoamine transporter-2 by methamphetamine and cocaine. Eur J Pharmacol 2002;449:71-4.

    Article  CAS  PubMed  Google Scholar 

  5. Sandoval V, Riddle EL, Hanson GR, Fleckenstein AE. Methylphenidate redistributes vesicular monoamine transporter-2: role of dopamine receptors. J Neuroscience 2002;22:8705-10.

    CAS  PubMed  Google Scholar 

  6. Lehericy S, Brandel J, Hirsch EC, Anglade P, Villares J, Scherman D, et al. Monoamine vesicular uptake sites in patients with Parkinson’s disease and Alzheimer’s disease, as measured by tritiated dihydrotetrabenazine autoradiography. Brain Res 1994;659:1-9.

    Article  CAS  PubMed  Google Scholar 

  7. Bohnen NI, Albin RL, Koeppe RA, Wernette KA, Kilbourne MR, Minoshima S, et al. Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab 2006;26:1198-212.

    Article  CAS  PubMed  Google Scholar 

  8. Zubieta JK, Taylor SF, Huguelet P, Koeppe RA, Kilbourn MR, Frey KA. Vesicular monoamine transporter concentrations in bipolar disorder type I, schizophrenia, and healthy subjects. Biol Psychiatry 2001;49:110-6.

    Article  CAS  PubMed  Google Scholar 

  9. Zubieta JK, Huguelet P, Ohl LE, Koeppe RA, Kilbourn MR, Carr JM, et al. High vesicular monoamine transporter binding in asymptomatic bipolar I disorder: sex differences and cognitive correlates. Am J Psychiatry. 2000;157:1619-28.

    Article  CAS  PubMed  Google Scholar 

  10. Weihe E, Schafer MK, Erickson JD, Eiden LE. Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. J Mol Neurosci 1994;5:149-64.

    Article  CAS  PubMed  Google Scholar 

  11. Anlauf M, Eissele R, Schafer MK, Eiden LE, Arnold R, Pauser U, et al. Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 2003;51:1027-40.

    Article  CAS  PubMed  Google Scholar 

  12. Maffei A, Liu Z, Witkowski P, Moschella F, Del Pozzo G, Liu E, et al. Identification of tissue-restricted transcripts in human islets. Endocrinology 2004;145:4513-21.

    Article  CAS  PubMed  Google Scholar 

  13. Souza F, Simpson NR, Witkowski P, Maffei A, Raffo A, Herron A, et al. Visualizing pancreatic beta-cell mass with [11C]DTBZ. Nucl Med Biol 2006;33:855-64.

    Article  PubMed  PubMed Central  Google Scholar 

  14. DaSilva JN, Carey JE, Sherman PS, Pisani TJ, Kilbourn MR. Characterization of [11C]tetrabenazine as an in vivo radioligand for the vesicular monoamine transporter. Nucl Med Biol 1994;21:151-6.

    Article  CAS  PubMed  Google Scholar 

  15. Frey KA, Wieland DM, Kilbourn MR. Imaging of monoaminergic and cholinergic vesicular transporters in the brain. Adv Pharmacol 1998;42:269-72.

    Article  CAS  PubMed  Google Scholar 

  16. Gilman S, Frey KA, Koeppe RA, Junck L, Little R, Vander Borght TM, et al. Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography. Ann Neurol 1996;40:885-92.

    Article  CAS  PubMed  Google Scholar 

  17. Pletscher A, Brossi A, Gey KF. Benzoquinolizine derivatives: a new class of monoamine decreasing drugs with psychotropic action. Int Rev Neurobiol 1962;4:275-306.

    Article  Google Scholar 

  18. Ashcroft GM, MacDougall EJ, Barker P. A comparison of tetrabenazine and chlorpromazine in chronic schizophrenia. J Ment Sci 1961;107:287-93.

    CAS  PubMed  Google Scholar 

  19. Paleacu D, Giladi N, Moore O, Stern A, Honigman S, Badarny S. Tetrabenazine treatment in movement disorders. Clin Neuropharmacol 2004;27:230-3.

    Article  CAS  PubMed  Google Scholar 

  20. Vander Borght TM, Kilbourn MR, Koeppe RA, DaSilva JN, Carey JE, Kuhl DE, et al. In vivo imaging of the brain vesicular monoamine transporter. J Nucl Med 1995;36:2252-60.

    CAS  PubMed  Google Scholar 

  21. Belanger MJ, Simpson NR, Wang T, Van Heertum RL, Mann JJ, Parsey RV. Biodistribution and radiation dosimetry of [11C]DASB in baboons. Nucl Med Biol 2004;31:1097-102.

    Article  CAS  PubMed  Google Scholar 

  22. DaSilva JN, Kilbourn MR, Mangner TJ. Synthesis of a [11C]methoxy derivative of alpha-dihydrotetrabenazine: a radioligand for studying the vesicular monoamine transporter. Appl Radiat Isotopes 1993;44:1487-9.

    Article  CAS  Google Scholar 

  23. Jewett DM, Kilbourn MR, Lee LC. A simple synthesis of [11C]dihydrotetrabenazine (DTBZ). Nucl Med Biol 1997;24:197-9.

    Article  CAS  PubMed  Google Scholar 

  24. Kilbourn M, Lee L, Vander Borght T, Jewett D, Frey K. Binding of alpha-dihydrotetrabenazine to the vesicular monoamine transporter is stereospecific. Eur J Pharmacol 1995;278:249-52.

    Article  CAS  PubMed  Google Scholar 

  25. Abi-Dargham A, Simpson N, Kegeles L, Parsey R, Hwang DR, Anjilvel S, et al. PET studies of binding competition between endogenous dopamine and the D1 radiotracer [11C]NNC 756. Synapse 1999;32:93-109.

    Article  CAS  PubMed  Google Scholar 

  26. Milak MS, Ogden RT, Vinocur DN, Van Heertum RL, Cooper TB, Mann JJ, et al. Effects of tryptophan depletion on the binding of [11C]-DASB to the serotonin transporter in baboons: response to acute serotonin deficiency. Biol Psychiatry 2005;57:102-6.

    Article  CAS  PubMed  Google Scholar 

  27. Parsey RV, Belanger MJ, Sullivan GM, Simpson NR, Stabin MG, van Heertum R, et al. Biodistribution and radiation dosimetry of 11C-WAY100,635 in humans. J Nucl Med 2005;46:614-9.

    CAS  PubMed  Google Scholar 

  28. Michel C, Sibomana M, Bol A. Preserving Poisson characteristics of PET data with weighted OSEM reconstruction. IEEE Trans Med Imaging 1999;2:1323-9.

    Google Scholar 

  29. Michel C, Sibomana M, Bol A, Bernard X, Lonneux M, Defrise M, Comtat C, Kinahan PE, Townsend DW. Preserving Poisson characteristics of PET data with weighted OSEM reconstruction. IEEE Med Imag Conf Rec 1998. M6-61. (on CD-ROM).

  30. Swindler DR, Wood CD. An atlas of primate gross anatomy: baboon, chimpanzee, and man. Seattle: University of Washington Press; 1973.

    Google Scholar 

  31. Murthy R, Erlandsson K, Kumar D, Van Heertum R, Mann JJ, Parsey R. Biodistribution and radiation dosimetry of [11C]-harmine in baboons. Nuclear Medicine Communications 2007, 28:748-754. Erratum in Nuclear Medicine Communications 2007, 28:882.

    Article  PubMed  Google Scholar 

  32. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software of internal dose assessment in nuclear medicine. J Nucl Med 2005;46:1023-7.

    PubMed  Google Scholar 

  33. Roberts MS, McLean S, Millingen KS, Galloway HM. The pharmacokinetics of tetrabenazine and its hydroxy metabolite in patients treated for involuntary movement disorders. Eur J Clin Pharmacol 1986;29:703-8.

    Article  CAS  PubMed  Google Scholar 

  34. Mehvar R, Jamali F, Watson MW, Skelton D. Direct injection high-performance liquid chromatography of tetrabenazine and its metabolite in plasma of humans and rats. J Pharm Sci 1986;75:1006-9.

    Article  CAS  PubMed  Google Scholar 

  35. Mehvar R, Jamali F, Watson MW, Skelton D. Pharmacokinetics of tetrabenazine and its major metabolite in man and rat. Bioavailability and dose dependency studies. Drug Metab Dispos 1987;15:250-5.

    CAS  PubMed  Google Scholar 

  36. Green EC. Anatomy of the rat. New York: Hafner Publishing Company; 1935.

    Google Scholar 

  37. Weihe E, Eiden LE. Chemical neuroanatomy of the vesicular amine transporters. FASEB J 2000;14:2435-49.

    Article  CAS  PubMed  Google Scholar 

  38. Eissele R, Anlauf M, Schafer MK, Eiden LE, Arnold R, Weihe E. Expression of vesicular monoamine transporters in endocrine hyperplasia and endocrine tumors of the oxyntic stomach. Digestion 1999;60:428-39.

    Article  CAS  PubMed  Google Scholar 

  39. Hunyady B, Palkovits M, Mezey E. Vesicular monoamine transporters in the rat stomach. J Physiol Paris 2000;94:123-30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the imaging team in the Department of Neuroscience for acquiring the whole-body studies. We would like to thank Dr. Michael G. Stabin, PhD for his guidance. This work was supported by grants from US PHS, NIDDK, 5 P30 DK063608-02 (RL), 2 RO1 DK63567-03 (PEH), Telethon.it-JDRF GJT04003 (PEH), and the Columbia University DERC. All experiments were performed in compliance with the laws of the USA and of the City and State of New York, as well with ethics approval by the Institutional Review Board at the New York State Psychiatric Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Murthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murthy, R., Harris, P., Simpson, N. et al. Whole body [11C]-dihydrotetrabenazine imaging of baboons: biodistribution and human radiation dosimetry estimates. Eur J Nucl Med Mol Imaging 35, 790–797 (2008). https://doi.org/10.1007/s00259-007-0648-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0648-2

Keywords

Navigation