Skip to main content

Advertisement

Log in

Evaluation of [18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Gefitinib, an inhibitor of the epidermal growth factor receptor–tyrosine kinase (EGFR-TK), has shown potent effects in a subset of patients carrying specific EGFR-TK mutations in advanced non-small-cell lung cancer. In this study, we asked whether PET with [18F]gefitinib may be used to study noninvasively the pharmacokinetics of gefitinib in vivo and to image the EGFR status of cancer cells.

Materials and methods

Synthesis of [18F]gefitinib has been previously described. The biodistribution and metabolic stability of [18F]gefitinib was assessed in mice and vervet monkeys for up to 2 h post injection by both micropositron emission tomography (PET)/computed tomography (CT) scans and postmortem ex vivo tissue harvesting. Uptake levels of radiolabeled gefitinib in EGFR-expressing human cancer cell lines with various levels of EGFR expression or mutation status were evaluated both in vivo and in vitro.

Results

MicroPET/CT scans in two species demonstrated a rapid and predominantly hepatobiliary clearance of [18F]gefitinib in vivo. However, uptake levels of radiolabeled gefitinib, both in vivo and in vitro, did not correlate with EGFR expression levels or functional status. This unexpected observation was due to high nonspecific, nonsaturable cellular uptake of gefitinib.

Conclusion

The biodistribution of the drug analogue [18F]gefitinib suggests that it may be used to assess noninvasively the pharmacokinetics of gefitinib in patients by PET imaging. This is of clinical relevance, as insufficient intratumoral drug concentrations are considered to be a factor for resistance to gefitinib therapy. However, the highly nonspecific cellular binding of [18F]gefitinib may preclude the use of this imaging probe for noninvasive assessment of EGFR receptor status in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pao W, Miller VA. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol. 2005;23:2556–68.

    Article  PubMed  CAS  Google Scholar 

  2. Saba NF, Khuri FR, Shin DM. Targeting the epidermal growth factor receptor. Trials in head and neck and lung cancer. Oncology. 2006;20:153–61.

    PubMed  Google Scholar 

  3. Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR. Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev. 2006;32:74–89.

    Article  PubMed  CAS  Google Scholar 

  4. Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol. 2002;20:1S–13S.

    PubMed  CAS  Google Scholar 

  5. Kris MG, Natale RB, Herbst RS, Lynch TJ Jr., Prager D, Belani CP, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. Jama. 2003;290:2149–58.

    Article  PubMed  CAS  Google Scholar 

  6. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol. 2003;21:2237–46.

    Article  PubMed  CAS  Google Scholar 

  7. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002;62:5749–54.

    PubMed  CAS  Google Scholar 

  8. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.

    Article  PubMed  CAS  Google Scholar 

  9. Cappuzzo F, Finocchiaro G, Metro G, Bartolini S, Magrini E, Cancellieri A, et al. Clinical experience with gefitinib: an update. Crit Rev Oncol Hematol. 2006;58:31–45.

    Article  PubMed  Google Scholar 

  10. Fowler JS, Ding YS, Volkow ND. Radiotracers for positron emission tomography imaging. Semin Nucl Med. 2003;33:14–27.

    Article  PubMed  Google Scholar 

  11. Murali D, Flores LG, Converse AK, Barlett RM, Barnhart TE, Armstrong EA, et al. Evaluation of [F-18]Iressa as aPET imaging agent for tumor overexpressing epidermal growth factor (EGFR) receptors. J Labelled Compd Radiopharm. 2005;48:S1–S341.

    Article  Google Scholar 

  12. Seimbille Y, Phelps ME, Czernin J, Silverman DS. Fluorin-18 labeling of 6,7-distributed anilinoquinazoline derivatives, for positron emission tomography (PET) imaging of tyrosine kianse receptors:synthesis of 18F-Iressa and related molecular probes.J Labelled Compd Radiopharm. 2005;48:819–27.

    Article  CAS  Google Scholar 

  13. Holt DP, Ravert HT, Dannals RF, Pomper MG. Synthesis of [11C]gefitinib for imaging epidermal growth factor receptor tyrosine kinase with positron emission tomography. J Labelled Compd Radiopharm. 2006;49:883–8.

    Article  CAS  Google Scholar 

  14. Wang JQ, Gao M, Miller KD, Sledge GW, Zheng QH. Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem Lett. 2006;16:4102–6.

    Article  PubMed  CAS  Google Scholar 

  15. Swaisland HC, Smith RP, Laight A, Kerr DJ, Ranson M, Wilder-Smith CH, et al. Single-dose clinical pharmacokinetic studies of gefitinib. Clin Pharmacokinet. 2005;44:1165–77.

    Article  PubMed  CAS  Google Scholar 

  16. Blackhall F, Ranson M, Thatcher N. Where next for gefitinib in patients with lung cancer? Lancet Oncol. 2006;7:499–507.

    Article  PubMed  CAS  Google Scholar 

  17. Elkind NB, Szentpetery Z, Apati A, Ozvegy-Laczka C, Varady G, Ujhelly O, et al. Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, gefitinib). Cancer Res. 2005;65:1770–7.

    Article  PubMed  CAS  Google Scholar 

  18. Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med. 2005;46:455–63.

    PubMed  Google Scholar 

  19. Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging. 2003;2:131–7.

    Article  PubMed  Google Scholar 

  20. Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med. 1997;38:1614–23.

    PubMed  CAS  Google Scholar 

  21. Ortu G, Ben-David I, Rozen Y, Freedman NM, Chisin R, Levitzki A, et al. Labeled EGFr-TK irreversible inhibitor (ML03): in vitro and in vivo properties, potential as PET biomarker for cancer and feasibility as anticancer drug. Int J Cancer. 2002;101:360–70.

    Article  PubMed  CAS  Google Scholar 

  22. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353:2012–24.

    Article  PubMed  CAS  Google Scholar 

  23. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.

    Article  PubMed  CAS  Google Scholar 

  24. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2:e73.

    Article  PubMed  Google Scholar 

  25. Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med. 2003;44:2027–32.

    PubMed  CAS  Google Scholar 

  26. Amann J, Kalyankrishna S, Massion PP, Ohm JE, Girard L, Shigematsu H, et al. Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res. 2005;65:226–35.

    PubMed  CAS  Google Scholar 

  27. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.

    Article  PubMed  CAS  Google Scholar 

  28. Huang SC, Truong D, Wu HM, Chatziioannou AF, Shao W, Wu AM, et al. An internet-based “kinetic imaging system” (KIS) for MicroPET. Mol Imaging Biol. 2005;7:330–41.

    Article  PubMed  Google Scholar 

  29. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.

    Article  PubMed  CAS  Google Scholar 

  30. Senekowitsch-Schmidtke R, Steiner K, Haunschild J, Mollenstadt S, Truckenbrodt R. In vivo evaluation of epidermal growth factor (EGF) receptor density on human tumor xenografts using radiolabeled EGF and anti-(EGF receptor) mAb 425. Cancer Immunol Immunother. 1996;42:108–14.

    Article  PubMed  CAS  Google Scholar 

  31. Eckelman WC. The application of receptor theory to receptor-binding and enzyme-binding oncologic radiopharmaceuticals. Nucl Med Biol. 1994;21:759–69.

    Article  PubMed  CAS  Google Scholar 

  32. Bonasera TA, Ortu G, Rozen Y, Krais R, Freedman NM, Chisin R, et al. Potential (18)F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl Med Biol. 2001;28:359–74.

    Article  PubMed  CAS  Google Scholar 

  33. McKillop D, Partridge EA, Kemp JV, Spence MP, Kendrew J, Barnett S, et al. Tumor penetration of gefitinib (Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor. Mol Cancer Ther. 2005;4:641–9.

    Article  PubMed  CAS  Google Scholar 

  34. Brehmer D, Greff Z, Godl K, Blencke S, Kurtenbach A, Weber M, et al. Cellular targets of gefitinib. Cancer Res. 2005;65:379–82.

    PubMed  CAS  Google Scholar 

  35. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305:1163–7.

    Article  PubMed  CAS  Google Scholar 

  36. Pal A, Glekas A, Doubrovin M, Balatoni J, Beresten T, Maxwell D, et al. Molecular Imaging of EGFR Kinase Activity in Tumors with (124)I-Labeled Small Molecular Tracer and Positron Emission Tomography. Mol Imaging Biol. 2006;8:262–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Waldemar Ladno, Judy Edwards, Victor Dominguez, and Dr. David Stout for excellent animal imaging technical assistance and Dr. Nagichettiar Satyamurthy and the UCLA Cyclotron staff for providing the radiolabeled compounds. We thank Dr. Jorge Barrio for allowing us to use the Automatic TLC-Linear Analyzer and Arash Safaei for help with the metabolite and monkey studies. We thank Drs. Henry Huang and Christine Wu for critical reading of the manuscript. This study was funded by the UCLA Institute of Molecular Medicine (DE-FC03-87E60615) and UCLA Lung SPORE (NIH P50 CA9038). All experiments reported in this study were conducted in compliance to laws of the state in which they were performed, inclusive of ethics approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang A. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, H., Seimbille, Y., Ferl, G.Z. et al. Evaluation of [18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors. Eur J Nucl Med Mol Imaging 35, 1089–1099 (2008). https://doi.org/10.1007/s00259-007-0636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0636-6

Keywords

Navigation