Skip to main content

Advertisement

Log in

Combined metabolic and morphologic imaging in thyroid carcinoma patients with elevated serum thyroglobulin and negative cervical ultrasonography: role of 124I-PET/CT and FDG-PET

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This study sought to compare iodine-124 positron emission tomography/computed tomography (124I-PET/CT) and 2-[18F]fluoro-2-deoxy-d-glucose- (FDG-) PET in the detection of recurrent differentiated thyroid carcinoma (DTC) lesions in patients with increasing serum thyroglobulin (Tg), Tg-antibodies, or both, but without pathological cervical ultrasonography. We assessed the lesion detection accuracy of 124I-PET alone, CT alone, 124I-PET/CT, FDG-PET, and all these modalities combined.

Material and methods

The study included 21 patients (9 follicular, 12 papillary DTC) who had been rendered disease-free by thyroidectomy and radioiodine treatment (RIT) and followed up for 21-275 months after the last RIT. In all patients, FDG-PET was performed first. Within 1 week, 124I-PET/CT was performed 24 h after oral administration of 43 ± 11 MBq 124I. Imaging results were correlated with further clinical follow-up with (n = 12) or without (n = 9) post-study histology as the reference standard.

Results

The sensitivities for DTC lesion detection were: 124I-PET, 49%; CT, 67%; 124I-PET/CT, 80%; FDG-PET, 70%; and all modalities combined, 91%. For local recurrences (distant metastases), the sensitivities were: 124I-PET, 60% (45%); CT, 20% (84%); and FDG-PET, 65% (71%). One-third of lesions demonstrated pathological tracer uptake with both 124I- and FDG-PET, while two-thirds were positive with only one of these modalities.

Conclusion

Used together, 124I-PET and CT allow localization of foci of highly specific 124I uptake as well as non-iodine-avid lesions. The combination of 124I-PET/CT and FDG-PET improves restaging in recurrent DTC by enabling detection on whole-body scans of local recurrence or metastases that are often not found if only one of the methods or other imaging modalities are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Frilling A, Görges R, Tecklenborg K, Gassmann P, Bockhorn M, Clausen M, et al. Value of preoperative diagnostic modalities in patients with recurrent thyroid carcinoma. Surgery 2000;128:1067-74.

    Article  CAS  PubMed  Google Scholar 

  2. Smallridge RC, Meek SE, Morgan MA, Gates GS, Fox TP, Grebe S, et al. Monitoring thyroglobulin in a sensitive immunoassay has comparable sensitivity to recombinant human tsh-stimulated thyroglobulin in follow-up of thyroid cancer patients. J Clin Endocrinol Metab 2007;92:82-7.

    Article  CAS  PubMed  Google Scholar 

  3. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001;42:1S-93S.

    CAS  PubMed  Google Scholar 

  4. Stokkel MP, Duchateau CS, Dragoiescu C. The value of FDG-PET in the follow-up of differentiated thyroid cancer: a review of the literature. Q J Nucl Med Mol Imaging 2006;50:78-87.

    CAS  PubMed  Google Scholar 

  5. Freudenberg LS, Antoch G, Jentzen W, Pink R, Knust J, Görges R, et al. Value of 124I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 2004;14:2092-8.

    Article  CAS  PubMed  Google Scholar 

  6. Freudenberg LS, Bockisch A, Jentzen W. 124I Positron emission tomographic dosimetry and positron emission tomography/computed tomography imaging in differentiated thyroid cancer. In: Biersack HJ, Grünwald F, editors. Thyroid cancer 2nd edn. Berlin: Springer; 2005.

    Google Scholar 

  7. Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007;48:108-14.

    CAS  PubMed  Google Scholar 

  8. Fleming ID, Cooper JS, Henson DE (eds) (1997) AJCC cancer staging manual. 5th edn. American Joint Committee on Cancer. Lippincott-Raven, Philadelphia.

  9. Freudenberg LS, Jentzen W, Görges R, Petrich T, Marlowe RJ, Knust J, et al. 124I-PET dosimetry in advanced thyroid cancer: Therapeutic impact. Nuklearmedizin 2007;46:121-8.

    CAS  PubMed  Google Scholar 

  10. Knust EJ, Dutschka K, Weinreich R. Preparation of 124I solutions after thermodistillation of irradiated 124TeO2 targets. Appl Radiat Isot 2000;52:181-84.

    Article  CAS  PubMed  Google Scholar 

  11. Antoch G, Kuehl H, Kanja J, Lauenstein TC, Schneemann H, Hauth E, et al. Dual modality PET/CT scanning with negative oral contrast agent to avoid artifacts: introduction and evaluation. Radiology 2004;230:879-85.

    Article  PubMed  Google Scholar 

  12. Furhang EE, Larson SM, Buranapong P, Humm JL, Furhang EE. Thyroid cancer dosimetry using clearance fitting. J Nucl Med 1999;40:131-36.

    CAS  PubMed  Google Scholar 

  13. Maxon HR, Thomas SR, Samaratunga RC. Dosimetric considerations in the radioiodine treatment of macrometastases and micrometastases from differentiated thyroid cancer. Thyroid 1997;7:183-87.

    Article  CAS  PubMed  Google Scholar 

  14. Dietlein M, Dressler J, Farahati J, Grunwald F, Leisner B, Moser E, et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 2). Nuklearmedizin. 2004;43:115-20.

    CAS  PubMed  Google Scholar 

  15. Dietlein M, Dressler J, Eschner W, Leisner B, Reiners C, Schicha H.Procedure guideline for iodine-131 whole-body scintigraphy for differentiated thyroid cancer (version 2). Nuklearmedizin 2003;42:123-5.

    CAS  PubMed  Google Scholar 

  16. International Commission on Radiological Protection: Radiation dose to Patients from Radiopharmaceuticals, Publication 80. Oxford: Pergamon; 1999.

  17. Frasoldati A, Pesenti M, Gallo M, Caroggio A, Salvo D, Valcavi R. Diagnosis of neck recurrences in patients with differentiated thyroid carcinoma. Cancer 2003 Jan 1;97(1):90-6.

    Article  PubMed  Google Scholar 

  18. Rosario PW, de Faria S, Bicalho L, Alves MF, Borges MA, Purisch S, et al. Ultrasonographic differentiation between metastatic and benign lymph nodes in patients with papillary thyroid carcinoma. J Ultrasound Med 2005;24:1385-9.

    Article  PubMed  Google Scholar 

  19. Torlontano M, Crocetti U, Augello G, D’Aloiso L, Bonfitto N, Varraso A, et al. Comparative evaluation of recombinant human thyrotropin-stimulated thyroglobulin levels, 131I whole-body scintigraphy, and neck ultrasonography in the follow-up of patients with papillary thyroid microcarcinoma who have not undergone radioiodine therapy. J Clin Endocrinol Metab 2006;91:60-3.

    Article  CAS  PubMed  Google Scholar 

  20. Görges R, Eising EG, Fotescu D, Renzing-Kohler K, Frilling A, Schmid KW, et al. Diagnostic value of high-resolution B-mode and power-mode sonography in the follow-up of thyroid cancer. Eur J Ultrasound 2003;16:191-206.

    Article  PubMed  Google Scholar 

  21. van den Brekel MW, Stel HV, Castelijns JA, Nauta JJ, van der Waal I, Valk J, et al. Cervical lymph node metastasis: assessment of radiological criteria. Radiology 1990;177:379-84.

    Article  PubMed  Google Scholar 

  22. Galloway RJ, Smallridge RC. Imaging in thyroid cancer. Endocrinol Metab Clin North Am 1996;25:93-113.

    Article  CAS  PubMed  Google Scholar 

  23. Freudenberg LS, Antoch G, Gorges R, Knust J, Pink R, Jentzen W, et al. Combined PET/CT with iodine-124 in diagnosis of spread metastatic thyroid carcinoma: a case report. Eur Radiol 2003;13:L19-23.

    Article  PubMed  Google Scholar 

  24. Grünwald F, Menzel C, Bender H, Palmedo H, Willkomm P, Ruhlmann J, et al. Comparison of F-18 FDG-PET with iodine-131 and Tc-99m-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid 1997;7:327-35.

    Article  PubMed  Google Scholar 

  25. Wang W, Macapinlac H, Larson SM, Yeh SD, Akhurst T, Finn RD, et al. [18F]-2-fluoro-2-deoxy-d-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic 131I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 1999;84:2291-302.

    Article  CAS  PubMed  Google Scholar 

  26. Chung JK, So Y, Lee JS, Choi CW, Lim SM, Lee DS, et al. Value of FDG PET in papillary thyroid carcinoma with negative I-131 whole-body scan. J Nucl Med 1999;40:986-92.

    CAS  PubMed  Google Scholar 

  27. Feine U, Lietzenmayer R, Hanke JP, Held J, Wohrle H, Muller-Schuenburg W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996;37:1468-72.

    CAS  PubMed  Google Scholar 

  28. Grünwald F, Kalicke T, Feine U, Lietzenmayer R, Scheidhauer K, Dietlein M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med 1999;26:1547-52.

    Article  PubMed  Google Scholar 

  29. Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 1996;379:458-60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We are indebted to Robert J. Marlowe for critically reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Freudenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freudenberg, L.S., Antoch, G., Frilling, A. et al. Combined metabolic and morphologic imaging in thyroid carcinoma patients with elevated serum thyroglobulin and negative cervical ultrasonography: role of 124I-PET/CT and FDG-PET. Eur J Nucl Med Mol Imaging 35, 950–957 (2008). https://doi.org/10.1007/s00259-007-0634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0634-8

Keywords

Navigation