Skip to main content
Log in

FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The main aim of this research was to determine the changes of FDG uptake in large arteries with aging as visualized by FDG-PET imaging.

Methods

We examined the presence of arterial FDG uptake in 149 subjects (61 males, 88 females; age range 5–83 years) who underwent whole-body PET scans for the assessment of non-cardiovascular disorders. The subjects were divided into eight age decade groups, with at least 12 subjects in each group. The presence of FDG uptake was recorded in the ascending, arch, descending thoracic and abdominal segments of the aorta, as well as in iliac and femoral arteries. We then calculated the percentage of segments with visible FDG uptake for each age group. Mean SUVs were calculated for each of the arterial segments and compared among the age groups.

Results

Among 149 subjects, 145 were noted to have visible uptake in at least one segment of the large vessels. Percentage of segments with visible FDG uptake increased with age (p < 0.01). Mean SUVs of the ascending aorta, aortic arch, descending thoracic aorta, iliac arteries and femoral arteries increased with age (p < 0.01).

Conclusion

Prevalence and intensity of FDG uptake in large arteries generally increases with aging. Increased FDG uptake likely represents the presence of active inflammatory process of atherosclerotic plaque. The magnitude of inflammation within the wall of the large arteries increases with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Breslow JL. Cardiovascular disease burden increases, NIH funding decreases. Nat Med 1997;3 6:600–1.

    Article  PubMed  CAS  Google Scholar 

  2. Braunwald E. Shattuck lecture–cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med 1997;6:337(19):1360–9.

    Google Scholar 

  3. Kortelainen ML. Adiposity, cardiac size and precursors of coronary atherosclerosis in 5- to 15-year-old children: a retrospective study of 210 violent deaths. Int J Obes Relat Metab Disord 1997;21 8:691–7.

    Article  PubMed  CAS  Google Scholar 

  4. Daniels SR. Cardiovascular disease risk factors and atherosclerosis in children and adolescents. Curr Atheroscler Rep 2001;3 6:479–85.

    Article  PubMed  CAS  Google Scholar 

  5. Scott J. The pathogenesis of atherosclerosis and new opportunities for treatment and prevention. J Neural Transm Suppl 2002;63:1–17.

    PubMed  CAS  Google Scholar 

  6. Hanke H, Lenz C, Finking G. The discovery of the pathophysiological aspects of atherosclerosis–a review. Acta Chir Belg 2001;101 4:162–9.

    PubMed  CAS  Google Scholar 

  7. Deligonul U. Coronary angiography as a prognostic tool. Anadolu Kardiyol Derg 2001;1 3:189–96.

    PubMed  CAS  Google Scholar 

  8. Naghavi M, Madjid M, Khan MR, Mohammadi RM, Willerson JT, Casscells SW. New developments in the detection of vulnerable plaque. Curr Atheroscler Rep 2001;3 2:125–35.

    Article  PubMed  CAS  Google Scholar 

  9. Tardif JC. Atherosclerosis imaging. Can J Cardiol 2005;21 12:1035–9.

    PubMed  Google Scholar 

  10. Guedes A, Tardif JC. Intravascular ultrasound assessment of atherosclerosis. Curr Atheroscler Rep 2004;6 3:219–24.

    Article  PubMed  Google Scholar 

  11. Rubba P, Faccenda F. Noninvasive ultrasound techniques versus angiography for monitoring drug-induced changes of the arterial walls. FASEB J 1993;7 15:1491–8.

    PubMed  CAS  Google Scholar 

  12. Gronholdt ML. B-mode ultrasound and spiral CT for the assessment of carotid atherosclerosis. Neuroimaging Clin N Am 2002;12 3:421–35.

    Article  PubMed  Google Scholar 

  13. Wasserman BA, Haacke EM, Li D. Carotid plaque formation and its evaluation with angiography, ultrasound, and MR angiography. J Magn Reson Imaging 1994;4 4:515–27.

    Article  PubMed  CAS  Google Scholar 

  14. Marchand B, Hernandez-Hoyos M, Orkisz M, Douek P. Diagnosis of renal artery stenosis with magnetic resonance angiography and stenosis quantification. J Mal Vasc 2000;25 5:312–20.

    PubMed  CAS  Google Scholar 

  15. da Luz PL, Bertini PJ, Favarato D. Noninvasive detection of coronary artery disease–challenges for prevention of disease and clinical events. Clinics 2005;60 5:415–28. Epub 2005 Oct 24.

    Article  PubMed  Google Scholar 

  16. Abou-Raya A, Abou-Raya S. Inflammation: a pivotal link between autoimmune diseases and atherosclerosis. Autoimmun Rev 2006;5:331–7.

    Article  PubMed  CAS  Google Scholar 

  17. Mach F. New anti-inflammatory agents to reduce atherosclerosis. Arch Physiol Biochem 2006;112 2:130–7.

    Article  PubMed  CAS  Google Scholar 

  18. Paffen E, DeMaat MP. C-reactive protein in atherosclerosis: A causal factor? Cardiovasc Res 2006;1 71:30–9.

    Article  Google Scholar 

  19. Rohren EM, Turkington TG, Coleman RE. Clinical Applications of PET in Oncology. Radiology 2004;231 2:305–32.

    Article  PubMed  Google Scholar 

  20. Andrews J, Al-Nahhas A, Pennell DJ, Hossain MS, Davies KA, Haskard DO, et al. Non-invasive imaging in the diagnosis and management of Takayasu’s arteritis. Ann Rheum Dis 2004;63:995–1000.

    Article  PubMed  CAS  Google Scholar 

  21. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 2004;45:1816–21.

    PubMed  Google Scholar 

  22. Zhuang H, Alavi A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med 2002;32 1:47–59.

    Article  PubMed  Google Scholar 

  23. Lakatta EG. Age-associated cardiovascular changes in health: impact on cardiovascular disease in older persons. Heart Fail Rev 2002;7:29–49.

    Article  PubMed  Google Scholar 

  24. Kannel WB. Overview of atherosclerosis. Clin Ther 1998;20:B2–B17.

    Article  PubMed  Google Scholar 

  25. Fayad ZA, Fuster V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 2001;17 89:305–16.

    Article  Google Scholar 

  26. Zhang Z, Machac J, Helft G, Worthley SG, Tang C, Zaman AG. Non-invasive imaging of atherosclerotic plaque macrophage in a rabbit model with F-18 FDG PET: a histopathological correlation. BMC Nucl Med 2006;6:3.

    Article  PubMed  Google Scholar 

  27. Belhocine T, Blockmans D, Hustinx R, Vandevivere J, Mortelmans L. Imaging of large vessel vasculitis with (18)FDG PET: illusion or reality? A critical review of the literature data. Eur J Nucl Med Mol Imaging 2004;31:300–2.

    Article  Google Scholar 

  28. Mochizuki Y, Fujii H, Yasuda S, Nakahara T, Takahashi W, Ide M, et al. FDG accumulation in aortic walls. Clin Nucl Med 2001;26:68–9.

    Article  PubMed  CAS  Google Scholar 

  29. Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: a new observation. Clin Nucl Med 2001;26:314–9.

    Article  PubMed  CAS  Google Scholar 

  30. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 2004;45:1816–21.

    PubMed  Google Scholar 

  31. El-Haddad G, Zhuang H, Gupta N, Alavi A. Evolving role of positron emission tomography in the management of patients with inflammatory and other benign disorders. Semin Nucl Med 2004;34:313–29.

    Article  PubMed  Google Scholar 

  32. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–11

    Article  PubMed  CAS  Google Scholar 

  33. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245–50.

    PubMed  CAS  Google Scholar 

  34. Weissberg PL. Noninvasive imaging of atherosclerosis: the biology behind the pictures. J Nucl Med 2004;45:1794–5.

    PubMed  Google Scholar 

  35. Herrington DM, Brown WV, Mosca L, Davis W, Eggleston B, Hundley WG, et al. Relationship between arterial stiffness and subclinical aortic atherosclerosis. Circulation 2004:27;110(4):432–7.

    Google Scholar 

  36. Bural GG, Torigian DA, Chamroonrat W, Alkwaldeh K, Elhaddad G, Alavi A. Quantitative Assessment of Atherosclerotic Burden (ATHERO-BURDEN) of aorta by combined FDG-PET and CT image analysis-a new concept. Nuclear Medicine and Biology 2006;33:1037–43.

    Article  PubMed  CAS  Google Scholar 

  37. Andrews J, Mason JC. Takayasu’s arteritis–recent advances in imaging offer promise. Rheumatology (Oxford) 2007;46 1:6–15, Jan.

    Article  CAS  Google Scholar 

  38. Walter MA, Melzer RA, Schindler C, Muller-Brand J, Tyndall A, Nitzsche EU. The value of [18F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging 2005;32:674–81.

    Article  PubMed  Google Scholar 

  39. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45 7:1245–50, Jul.

    PubMed  CAS  Google Scholar 

  40. Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 2005;12 3:294–301, May-Jun.

    Article  PubMed  Google Scholar 

  41. Ogawa M, Magata Y, Kato T, Hatano K, Ishino S, Mukai T, et al. Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. 2006 Nov;47(11):1845–50.

    Google Scholar 

  42. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48 9:1825–31, Nov 7.

    Article  PubMed  CAS  Google Scholar 

  43. van der Loo B, Koppensteiner R, Luscher TF. How do blood vessels age? Mechanisms and clinical implications. Vasa 2004;33:3–11.

    PubMed  Google Scholar 

  44. Yun M, Jang S, Cucchiara A, Newberg AB, Alavi A. 18F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med 2002;32 1:70–6.

    Article  PubMed  Google Scholar 

  45. Scheel AK, Meller J, Vosshenrich R, Kohlhoff E, Siefker U, Muller GA, et al. Diagnosis and follow up of aortitis in the elderly. Ann Rheum Dis. 2004;63:1507–10.

    Article  PubMed  CAS  Google Scholar 

  46. Kim CK, Gupta NC, Chandramouli B, Alavi A. Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J Nucl Med 1994;35 1:164–7.

    PubMed  CAS  Google Scholar 

  47. Fahey FH. Positron emission tomography instrumentation. Radiol Clin North Am 2001;39:919–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bural, G.G., Torigian, D.A., Chamroonrat, W. et al. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging 35, 562–569 (2008). https://doi.org/10.1007/s00259-007-0528-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0528-9

Keywords

Navigation