Skip to main content

Advertisement

Log in

A new PET tracer specific for vascular endothelial growth factor receptor 2

  • Molecular Imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Noninvasive positron emission tomography (PET) imaging of vascular endothelial growth factor receptor 2 (VEGFR-2) expression could be a valuable tool for evaluation of patients with a variety of malignancies, and particularly for monitoring those undergoing antiangiogenic therapies that block VEGF/VEGFR-2 function. The aim of this study was to develop a VEGFR-2-specific PET tracer.

Methods

The D63AE64AE67A mutant of VEGF121 (VEGFDEE) was generated by recombinant DNA technology. VEGF121 and VEGFDEE were purified and conjugated with DOTA for 64Cu labeling. The DOTA conjugates were tested in vitro for VEGFR-2 specificity and functional activity. In vivo tumor targeting efficacy and pharmacokinetics of 64Cu-labeled VEGF121 and VEGFDEE were compared using an orthotopic 4T1 murine breast tumor model. Blocking experiments, biodistribution studies, and immunofluorescence staining were carried out to confirm the noninvasive imaging results.

Results

Cell binding assay demonstrated that VEGFDEE had about 20-fold lower VEGFR-1 binding affinity and only slightly lower VEGFR-2 binding affinity as compared with VEGF121. MicroPET imaging studies revealed that both 64Cu-DOTA-VEGF121 and 64Cu-DOTA-VEGFDEE had rapid and prominent activity accumulation in VEGFR-2-expressing 4T1 tumors. The renal uptake of 64Cu-DOTA-VEGFDEE was significantly lower than that of 64Cu-DOTA-VEGF121 as rodent kidneys expressed high levels of VEGFR-1 based on immunofluorescence staining. Blocking experiments and biodistribution studies confirmed the VEGFR specificity of 64Cu-DOTA-VEGFDEE.

Conclusion

We have developed a VEGFR-2-specific PET tracer, 64Cu-DOTA-VEGFDEE. It has comparable tumor targeting efficacy to 64Cu-DOTA-VEGF121 but much reduced renal toxicity. This tracer may be translated into the clinic for imaging tumor angiogenesis and monitoring antiangiogenic treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27–31.

    Article  PubMed  CAS  Google Scholar 

  2. Cai W, Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 2007;12:4267–79.

    Article  PubMed  CAS  Google Scholar 

  3. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002;2:795–803.

    Article  PubMed  CAS  Google Scholar 

  4. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25:581–611.

    Article  PubMed  CAS  Google Scholar 

  5. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumour growth and angiogenesis. J Clin Oncol 2005;23:1011–27.

    Article  PubMed  CAS  Google Scholar 

  6. Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 2005;209–31.

  7. Sun J, Wang DA, Jain RK, Carie A, Paquette S, Ennis E, et al. Inhibiting angiogenesis and tumourigenesis by a synthetic molecule that blocks binding of both VEGF and PDGF to their receptors. Oncogene 2005;24:4701–9.

    Article  PubMed  CAS  Google Scholar 

  8. Watanabe H, Mamelak AJ, Wang B, Howell BG, Freed I, Esche C, et al. Anti-vascular endothelial growth factor receptor-2 (Flk-1/KDR) antibody suppresses contact hypersensitivity. Exp Dermatol 2004;13:671–81.

    Article  PubMed  CAS  Google Scholar 

  9. Prewett M, Huber J, Li Y, Santiago A, O’Connor W, King K, et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumour angiogenesis and growth of several mouse and human tumours. Cancer Res 1999;59:5209–18.

    PubMed  CAS  Google Scholar 

  10. Ciardiello F, Caputo R, Damiano V, Troiani T, Vitagliano D, Carlomagno F, et al. Antitumour effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res 2003;9:1546–56.

    PubMed  CAS  Google Scholar 

  11. Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Curwen JO, Hennequin LF, et al. ZD4190: an orally active inhibitor of vascular endothelial growth factor signaling with broad-spectrum antitumour efficacy. Cancer Res 2000;60:970–5.

    PubMed  CAS  Google Scholar 

  12. Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumour growth after oral administration. Cancer Res 2000;60:2178–89.

    PubMed  CAS  Google Scholar 

  13. Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47:2048–56.

    PubMed  CAS  Google Scholar 

  14. Hsu AR, Cai W, Veeravagu A, Mohamedali KA, Chen K, Kim S, et al. Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med 2007;48:445–54.

    PubMed  CAS  Google Scholar 

  15. Backer MV, Levashova Z, Patel V, Jehning BT, Claffey K, Blankenberg FG, et al. Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 2007;13:504–9.

    Article  PubMed  CAS  Google Scholar 

  16. Lu E, Wagner WR, Schellenberger U, Abraham JA, Klibanov AL, Woulfe SR, et al. Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 2003;108:97–103.

    Article  PubMed  CAS  Google Scholar 

  17. Blankenberg FG, Mandl S, Cao YA, O’Connell-Rodwell C, Contag C, Mari C, et al. Tumour imaging using a standardized radiolabeled adapter protein docked to vascular endothelial growth factor. J Nucl Med 2004;45:1373–80.

    PubMed  CAS  Google Scholar 

  18. Blankenberg FG, Backer MV, Levashova Z, Patel V, Backer JM. In vivo tumour angiogenesis imaging with site-specific labeled 99mTc-HYNIC-VEGF. Eur J Nucl Med Mol Imaging 2006;33:841–8.

    Article  PubMed  Google Scholar 

  19. Cornelissen B, Oltenfreiter R, Kersemans V, Staelens L, Frankenne F, Foidart JM, et al. In vitro and in vivo evaluation of [123I]-VEGF165 as a potential tumour marker. Nucl Med Biol 2005;32:431–6.

    Article  PubMed  CAS  Google Scholar 

  20. Li S, Peck-Radosavljevic M, Kienast O, Preitfellner J, Havlik E, Schima W, et al. Iodine-123-vascular endothelial growth factor-165 (123I-VEGF165). Biodistribution, safety and radiation dosimetry in patients with pancreatic carcinoma. Q J Nucl Med Mol Imaging 2004;48:198–206.

    PubMed  CAS  Google Scholar 

  21. Li S, Peck-Radosavljevic M, Kienast O, Preitfellner J, Hamilton G, Kurtaran A, et al. Imaging gastrointestinal tumours using vascular endothelial growth factor-165 (VEGF165) receptor scintigraphy. Ann Oncol 2003;14:1274–7.

    Article  PubMed  CAS  Google Scholar 

  22. Yoshimoto M, Kinuya S, Kawashima A, Nishii R, Yokoyama K, Kawai K. Radioiodinated VEGF to image tumour angiogenesis in a LS180 tumour xenograft model. Nucl Med Biol 2006;33:963–9.

    Article  PubMed  CAS  Google Scholar 

  23. Chan C, Sandhu J, Guha A, Scollard DA, Wang J, Chen P, et al. A human transferrin-vascular endothelial growth factor (hnTf-VEGF) fusion protein containing an integrated binding site for 111In for imaging tumour angiogenesis. J Nucl Med 2005;46:1745–52.

    PubMed  CAS  Google Scholar 

  24. Simon M, Rockl W, Hornig C, Grone EF, Theis H, Weich HA, et al. Receptors of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in fetal and adult human kidney: localization and [125I]VEGF binding sites. J Am Soc Nephrol 1998;9:1032–44.

    PubMed  CAS  Google Scholar 

  25. Keyt BA, Nguyen HV, Berleau LT, Duarte CM, Park J, Chen H, et al. Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis. J Biol Chem 1996;271:5638–46.

    Article  PubMed  CAS  Google Scholar 

  26. Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X. In vitro and in vivo characterization of 64Cu-labeled Abegrin™, a humanized monoclonal antibody against integrin αvβ3. Cancer Res 2006;66:9673–81.

    Article  PubMed  CAS  Google Scholar 

  27. Cai W, Zhang X, Wu Y, Chen X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide (18F-FBEM), and the synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J Nucl Med 2006;47:1172–80.

    PubMed  CAS  Google Scholar 

  28. Chen X, Sievers E, Hou Y, Park R, Tohme M, Bart R, et al. Integrin αvβ3-targeted imaging of lung cancer. Neoplasia 2005;7:271–9.

    Article  PubMed  CAS  Google Scholar 

  29. Cai W, Olafsen T, Zhang X, Cao Q, Gambhir SS, Williams LE, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 2007;48:304–10.

    Article  PubMed  CAS  Google Scholar 

  30. Cao Q, Cai W, Li ZB, Chen K, He L, Li HC, et al. PET imaging of acute and chronic inflammation in living mice. Eur J Nucl Med Mol Imaging 2007 May 31 [Epub ahead of print].

  31. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2:47–52.

    Article  CAS  Google Scholar 

  32. Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 1990;5:519–24.

    PubMed  CAS  Google Scholar 

  33. Matthews W, Jordan CT, Gavin M, Jenkins NA, Copeland NG, Lemischka IR. A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc Natl Acad Sci U S A 1991;88:9026–30.

    Article  PubMed  CAS  Google Scholar 

  34. Underiner TL, Ruggeri B, Gingrich DE. Development of vascular endothelial growth factor receptor (VEGFR) kinase inhibitors as anti-angiogenic agents in cancer therapy. Curr Med Chem 2004;11:731–45.

    Article  PubMed  CAS  Google Scholar 

  35. Velikyan I, Sundberg AL, Lindhe O, Hoglund AU, Eriksson O, Werner E, et al. Preparation and evaluation of 68Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumours. J Nucl Med 2005;46:1881–8.

    PubMed  CAS  Google Scholar 

  36. Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, et al. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem 2004;47:1465–74.

    Article  PubMed  CAS  Google Scholar 

  37. Sprague JE, Peng Y, Sun X, Weisman GR, Wong EH, Achilefu S, et al. Preparation and biological evaluation of copper-64-labeled Tyr3-octreotate using a cross-bridged macrocyclic chelator. Clin Cancer Res 2004;10:8674–82.

    Article  PubMed  CAS  Google Scholar 

  38. Shrivastava A, von Wronski MA, Sato AK, Dransfield DT, Sexton D, Bogdan N, et al. A distinct strategy to generate high-affinity peptide binders to receptor tyrosine kinases. Protein Eng Des Sel 2005;18:417–24.

    Article  PubMed  CAS  Google Scholar 

  39. Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up anti-angiogenic drug development. Mol Cancer Ther 2006;5:2624–33.

    Article  PubMed  CAS  Google Scholar 

  40. Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 2002;94:1484–93.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by National Institute of Biomedical Imaging and Bioengineering (NIBIB) (R21 EB001785), National Cancer Institute (NCI) (R21 CA102123, P50 CA114747, U54 CA119367, and R24 CA93862), Department of Defense (DOD) (W81XWH-04-1-0697, W81XWH-06-1-0665, W81XWH-06-1-0042, and DAMD17-03-1-0143), and a Benedict Cassen Postdoctoral Fellowship from the Education and Research Foundation of the Society of Nuclear Medicine (to W. Cai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen.

Additional information

Hui Wang and Weibo Cai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Cai, W., Chen, K. et al. A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur J Nucl Med Mol Imaging 34, 2001–2010 (2007). https://doi.org/10.1007/s00259-007-0524-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0524-0

Keywords

Navigation