Skip to main content
Log in

In vivo imaging of the endocannabinoid system: a novel window to a central modulatory mechanism in humans

  • Editorial
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Devane WA, Dysarz FA III, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988;34:605–13.

    PubMed  CAS  Google Scholar 

  2. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 1990;346:561–4.

    PubMed  CAS  Google Scholar 

  3. Lutz B. Molecular biology of cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids 2002;66:123–42.

    PubMed  CAS  Google Scholar 

  4. van der Stelt M, Di Marzo V. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 2003;480:133–50.

    PubMed  Google Scholar 

  5. Marsicano G, Goodenough S, Monory K, et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 2003;302:84–8.

    PubMed  CAS  Google Scholar 

  6. Paradisi A, Oddi S, Maccarrone M. The endocannabinoid system in ageing: a new target for drug development. Curr Drug Targets 2006;7:1539–52.

    PubMed  CAS  Google Scholar 

  7. Iversen L. Cannabis and the brain. Brain 2003;126:1252–70.

    PubMed  Google Scholar 

  8. Van Sickle MD, Duncan M, Kingsley PJ, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 2005;310:329–32.

    PubMed  Google Scholar 

  9. Onaivi ES, Ishiguro H, Gong JP, et al. Discovery of the presence and functional expression of cannabinoid CB2 receptors in brain. Ann N Y Acad Sci 2006;1074:514–36.

    PubMed  CAS  Google Scholar 

  10. Di Marzo V, Matias I. Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005;8:585–9.

    PubMed  Google Scholar 

  11. Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 2004;3:771–84.

    PubMed  Google Scholar 

  12. Wilson RI, Nicoll RA. Endocannabinoid signaling in the brain. Science 2002;296:678–82.

    PubMed  CAS  Google Scholar 

  13. Degroot A, Nomikos GG. In vivo neurochemical effects induced by changes in endocannabinoid neurotransmission. Curr Opin Pharmacol 2007;7:62–8.

    PubMed  CAS  Google Scholar 

  14. Herkenham M, Lynn AB, Little MD, et al. Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 1990;87:1932–6.

    PubMed  CAS  Google Scholar 

  15. De Jesus ML, Salles J, Meana JJ, Callado LF. Characterization of CB1 cannabinoid receptor immunoreactivity in postmortem human brain homogenates. Neuroscience 2006;140:635–43.

    PubMed  Google Scholar 

  16. Burns D, Van Laere K, Sanabria-Bohorquez S, et al. [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci U S A 2007; 104:9800–5.

    PubMed  CAS  Google Scholar 

  17. Drysdale AJ, Platt B. Cannabinoids: mechanisms and therapeutic applications in the CNS. Curr Med Chem 2003;10:2719–32.

    PubMed  CAS  Google Scholar 

  18. Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003;4:873–84.

    PubMed  CAS  Google Scholar 

  19. Cota D, Steiner MA, Marsicano G, et al. Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic-pituitary-adrenal axis function. Endocrinology 2007;148:1574–81.

    PubMed  CAS  Google Scholar 

  20. Mechoulam R, Lichtman AH. Neuroscience. Stout guards of the central nervous system. Science 2003;302:65–7.

    PubMed  CAS  Google Scholar 

  21. Steffens M, Zentner J, Honegger J, Feuerstein TJ. Binding affinity and agonist activity of putative endogenous cannabinoids at the human neocortical CB1 receptor. Biochem Pharmacol 2005;69:169–78.

    PubMed  CAS  Google Scholar 

  22. Gatley SJ, Gifford AN, Volkow ND, Lan R, Makriyannis A. 123I-labeled AM251: a radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors. Eur J Pharmacol 1996;307:331–8.

    PubMed  CAS  Google Scholar 

  23. Gatley SJ, Lan R, Volkow ND, et al. Imaging the brain marijuana receptor: development of a radioligand that binds to cannabinoid CB1 receptors in vivo. J Neurochem 1998;70:417–23.

    Article  PubMed  CAS  Google Scholar 

  24. Berding G, Muller-Vahl K, Schneider U, et al. [123I]AM281 single-photon emission computed tomography imaging of central cannabinoid CB(1) receptors before and after delta(9)-tetrahydrocannabinol therapy and whole-body scanning for assessment of radiation dose in Tourette patients. Biol Psychiatry 2004;55:904–15.

    PubMed  CAS  Google Scholar 

  25. Berding G, Schneider U, Gielow P, et al. Feasibility of central cannabinoid CB1 receptor imaging with [124I]AM281 PET demonstrated in a schizophrenic patient. Psychiatry Res 2006;147:249–56.

    PubMed  CAS  Google Scholar 

  26. Horti AG, Fan H, Kuwabara H, et al. 11C-JHU75528: a radiotracer for PET imaging of CB1 cannabinoid receptors. J Nucl Med 2006;47:1689–96.

    PubMed  CAS  Google Scholar 

  27. Donohue S, Halldin C, Finnema S, Gulyas B, Pike V. Synthesis and in vivo evaluation of a new PET radioligand for imaging the cannabinoid type-1 (CB1) receptors. Neuroimage 2006;31:T50.

    Google Scholar 

  28. Yasuno F, Brown AK, Zoghbi SS, et al. The PET radioligand [11C]MePPEP binds reversibly and with high specific signal to cannabinoid CB(1) receptors in nonhuman primate brain. Neuropsychopharmacology 2007 Mar 28; [Epub ahead of print].

  29. Liu P, Lin LS, Hamill TG, et al. Discovery of N-{[(1S,2S)- 2-(3-Cyanophenyl)-3-[4-(2-[18F]fluoroethoxy)phenyl)]-1-methylpropyl}-2-methyl-2-[(5-methylpyridin-2-yl)oxy]propanamide ([18F]MK-9470), a Cannabinoid-1 Receptor PET Tracer Suitable for Clinical Use. J Med Chem 2007 Jul 3;[Epub ahead of print].

  30. Evens N, Bosier B, Van Laere K, Verbruggen A, Bormans G. Synthesis and evaluation of carbon-11 labelled (2,3-dichloro-phenyl)-[5-methoxy-2-methyl-3-(2-morpholin-4-yl-ethyl)-indol-1-yl-ethyl)-indol-1-yl]methanone as a PET radioligand with affinity for the CB2 receptor [abstract]. J Nucl Med 2007;48.

  31. Sarne Y, Mechoulam R. Cannabinoids: between neuroprotection and neurotoxicity. Curr Drug Targets CNS Neurol Disord 2005;4:677–84.

    PubMed  CAS  Google Scholar 

  32. Ozaita A, Puighermanal E, Maldonado R. Regulation of PI3K/Akt/GSK-3 pathway by cannabinoids in the brain. J Neurochem 2007 May 4; [Epub ahead of print].

  33. Gerdeman GL, Ronesi J, Lovinger DM. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 2002;5:446–51.

    PubMed  CAS  Google Scholar 

  34. Lastres-Becker I, Cebeira M, De Ceballos ML, et al. Increased cannabinoid CB1 receptor binding and activation of GTP-binding proteins in the basal ganglia of patients with Parkinson’s syndrome and of MPTP-treated marmosets. Eur J Neurosci 2001;14:1827–32.

    PubMed  CAS  Google Scholar 

  35. Giuffrida A, Parsons LH, Kerr TM, Rodriguez DF, Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 1999;2:358–63.

    PubMed  CAS  Google Scholar 

  36. Levenes C, Daniel H, Soubrie P, Crepel F. Cannabinoids decrease excitatory synaptic transmission and impair long-term depression in rat cerebellar Purkinje cells. J Physiol 1998;510(Pt 3):867–79.

    PubMed  CAS  Google Scholar 

  37. Segovia G, Mora F, Crossman AR, Brotchie JM. Effects of CB1 cannabinoid receptor modulating compounds on the hyperkinesia induced by high-dose levodopa in the reserpine-treated rat model of Parkinson’s disease. Mov Disord 2003;18:138–49.

    PubMed  Google Scholar 

  38. Sevcik J, Masek K. Potential role of cannabinoids in Parkinson's disease. Drugs Aging 2000;16:391–5.

    PubMed  CAS  Google Scholar 

  39. Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J 2000;14:1432–8.

    PubMed  Google Scholar 

  40. Sieradzan KA, Fox SH, Hill M, Dick JP, Crossman AR, Brotchie JM. Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology 2001;57:2108–11.

    PubMed  CAS  Google Scholar 

  41. Fox SH, Henry B, Hill M, Crossman A, Brotchie J. Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord 2002;17:1180–7.

    PubMed  Google Scholar 

  42. Lastres-Becker I, Fernandez-Ruiz J. An overview of Parkinson’s disease and the cannabinoid system and possible benefits of cannabinoid-based treatments. Curr Med Chem 2006;13:3705–18.

    PubMed  CAS  Google Scholar 

  43. Glass M, Dragunow M, Faull RL. The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 2000;97:505–19.

    PubMed  CAS  Google Scholar 

  44. Glass M, Faull RL, Dragunow M. Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience 1993;56:523–7.

    PubMed  CAS  Google Scholar 

  45. Maccarrone M, Battista N, Centonze D. The endocannabinoid pathway in Huntington’s disease: a comparison with other neurodegenerative diseases. Prog Neurobiol 2007;81:349–79.

    PubMed  CAS  Google Scholar 

  46. Lastres-Becker I, De Miguel R, Fernandez-Ruiz JJ. The endocannabinoid system and Huntington’s disease. Curr Drug Target CNS Neurol Disord 2003;2:335–47.

    CAS  Google Scholar 

  47. Glass M, van Dellen A, Blakemore C, Hannan AJ, Faull RL. Delayed onset of Huntington’s disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors. Neuroscience 2004;123:207–12.

    PubMed  CAS  Google Scholar 

  48. Ramirez BG, Blazquez C, Gomez del PT, Guzman M, De Ceballos ML. Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 2005;25:1904–13.

    PubMed  CAS  Google Scholar 

  49. Eubanks LM, Rogers CJ, Beuscher AE, et al. A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol Pharm 2006;3:773–7.

    PubMed  CAS  Google Scholar 

  50. Shoemaker JL, Seely KA, Reed RL, Crow JP, Prather PL. The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J Neurochem 2007;101:87–98.

    PubMed  CAS  Google Scholar 

  51. Ashton JC, Rahman RM, Nair SM, Sutherland BA, Glass M, Appleton I. Cerebral hypoxia-ischemia and middle cerebral artery occlusion induce expression of the cannabinoid CB2 receptor in the brain. Neurosci Lett 2007;412:114–7.

    PubMed  CAS  Google Scholar 

  52. Jin KL, Mao XO, Goldsmith PC, Greenberg DA. CB1 cannabinoid receptor induction in experimental stroke. Ann Neurol 2000;48:257–61.

    PubMed  CAS  Google Scholar 

  53. Parmentier-Batteur S, Jin K, Mao XO, Xie L, Greenberg DA. Increased severity of stroke in CB1 cannabinoid receptor knock-out mice. J Neurosci 2002;22:9771–5.

    PubMed  CAS  Google Scholar 

  54. Iskedjian M, Bereza B, Gordon A, Piwko C, Einarson TR. Meta-analysis of cannabis based treatments for neuropathic and multiple sclerosis-related pain. Curr Med Res Opin 2007;23:17–24.

    PubMed  CAS  Google Scholar 

  55. Pryce G, Baker D. Control of spasticity in a multiple sclerosis model is mediated by CB1, not CB2, cannabinoid receptors. Br J Pharmacol 2007;150:519–25.

    PubMed  CAS  Google Scholar 

  56. Benito C, Romero JP, Tolon RM, et al. Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci 2007;27:2396–402.

    PubMed  CAS  Google Scholar 

  57. Bifulco M, Laezza C, Malfitano AM. From anecdotal evidence of cannabinoids in multiple sclerosis to emerging new therapeutical approaches. Mult Scler 2007;13:133–4.

    PubMed  CAS  Google Scholar 

  58. Bacci A, Huguenard JR, Prince DA. Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 2004;431:312–6.

    PubMed  CAS  Google Scholar 

  59. Wallace MJ, Martin BR, DeLorenzo RJ. Evidence for a physiological role of endocannabinoids in the modulation of seizure threshold and severity. Eur J Pharmacol 2002;452:295–301.

    PubMed  CAS  Google Scholar 

  60. Deshpande LS, Blair RE, Ziobro JM, Sombati S, Martin BR, DeLorenzo RJ. Endocannabinoids block status epilepticus in cultured hippocampal neurons. Eur J Pharmacol 2007;558:52–9.

    PubMed  CAS  Google Scholar 

  61. Wallace MJ, Blair RE, Falenski KW, Martin BR, DeLorenzo RJ. The endogenous cannabinoid system regulates seizure frequency and duration in a model of temporal lobe epilepsy. J Pharmacol Exp Ther 2003;307:129–37.

    PubMed  CAS  Google Scholar 

  62. Chen K, Ratzliff A, Hilgenberg L, et al. Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 2003;39:599–611.

    PubMed  CAS  Google Scholar 

  63. Katona I, Sperlagh B, Magloczky Z, et al. GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience 2000;100:797–804.

    PubMed  CAS  Google Scholar 

  64. Tsou K, Mackie K, Sanudo-Pena MC, Walker JM. Cannabinoid CB1 receptors are localized primarily on cholecystokinin-containing GABAergic interneurons in the rat hippocampal formation. Neuroscience 1999;93:969–75.

    PubMed  CAS  Google Scholar 

  65. Di Marzo V, Goparaju SK, Wang L, et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001;410:822–5.

    PubMed  Google Scholar 

  66. Cooper SJ. Endocannabinoids and food consumption: comparisons with benzodiazepine and opioid palatability-dependent appetite. Eur J Pharmacol 2004;500:37–49.

    PubMed  CAS  Google Scholar 

  67. Maresz K, Pryce G, Ponomarev ED, et al. Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB(1) on neurons and CB(2) on autoreactive T cells. Nat Med 2007;13:492–7.

    PubMed  CAS  Google Scholar 

  68. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature 2006;443:289–95.

    PubMed  CAS  Google Scholar 

  69. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005;365:1389–97.

    PubMed  Google Scholar 

  70. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 2006;295:761–75.

    PubMed  CAS  Google Scholar 

  71. Kirkham TC. Endogenous cannabinoids: a new target in the treatment of obesity. Am J Physiol Regul Integr Comp Physiol 2003;284:R343–4.

    PubMed  CAS  Google Scholar 

  72. Croxford JL. Therapeutic potential of cannabinoids in CNS disease. CNS Drugs 2003;17:179–202.

    PubMed  CAS  Google Scholar 

  73. Siegfried Z, Kanyas K, Latzer Y, et al. Association study of cannabinoid receptor gene (CNR1) alleles and anorexia nervosa: differences between restricting and binging/purging subtypes. Am J Med Genet 2004;125B:126–30.

    CAS  PubMed  Google Scholar 

  74. Hayakawa K, Mishima K, Nozako M, et al. High-cholesterol feeding aggravates cerebral infarction via decreasing the CB1 receptor. Neurosci Lett 2007;414:183–7.

    PubMed  CAS  Google Scholar 

  75. Compton WM, Thomas YF, Conway KP, Colliver JD. Developments in the epidemiology of drug use and drug use disorders. Am J Psychiatry 2005;162:1494–502.

    PubMed  Google Scholar 

  76. Villares J. Chronic use of marijuana decreases cannabinoid receptor binding and mRNA expression in the human brain. Neuroscience 2007;145:323–34.

    PubMed  CAS  Google Scholar 

  77. Tselnicker I, Keren O, Hefetz A, Pick CG, Sarne Y. A single low dose of tetrahydrocannabinol induces long-term cognitive deficits. Neurosci Lett 2007;411:108–11.

    PubMed  CAS  Google Scholar 

  78. Soltesz I, Staley K. High times for memory: cannabis disrupts temporal coordination among hippocampal neurons. Nat Neurosci 2006;9:1461–3.

    PubMed  CAS  Google Scholar 

  79. Nowak KL, Vinod KY, Hungund BL. Pharmacological manipulation of cb1 receptor function alters development of tolerance to alcohol. Alcohol Alcohol 2006;41:24–32.

    PubMed  CAS  Google Scholar 

  80. Hungund BL, Basavarajappa BS. Role of endocannabinoids and cannabinoid CB1 receptors in alcohol-related behaviors. Ann N Y Acad Sci 2004;1025:515–27.

    PubMed  CAS  Google Scholar 

  81. Moranta D, Esteban S, Garcia-Sevilla JA. Ethanol desensitizes cannabinoid CB1 receptors modulating monoamine synthesis in the rat brain in vivo. Neurosci Lett 2006;392:58–61.

    PubMed  CAS  Google Scholar 

  82. Economidou D, Mattioli L, Cifani C, et al. Effect of the cannabinoid CB1 receptor antagonist SR-141716A on ethanol self-administration and ethanol-seeking behaviour in rats. Psychopharmacology (Berl) 2006;183:394–403.

    CAS  Google Scholar 

  83. Gonzalez S, Valenti M, de MR, et al. Changes in endocannabinoid contents in reward-related brain regions of alcohol-exposed rats, and their possible relevance to alcohol relapse. Br J Pharmacol 2004;143:455–64.

    PubMed  CAS  Google Scholar 

  84. Caille S, Varez-Jaimes L, Polis I, Stouffer DG, Parsons LH. Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J Neurosci 2007;27:3695–702.

    PubMed  CAS  Google Scholar 

  85. Vinod KY, Hungund BL. Cannabinoid-1 receptor: a novel target for the treatment of neuropsychiatric disorders. Expert Opin Ther Targets 2006;10:203–10.

    PubMed  CAS  Google Scholar 

  86. Laviolette SR, Grace AA. The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction. Cell Mol Life Sci 2006;63:1597–613.

    PubMed  CAS  Google Scholar 

  87. Dean B, Sundram S, Bradbury R, Scarr E, Copolov D. Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience 2001;103:9–15.

    PubMed  CAS  Google Scholar 

  88. Newell KA, Deng C, Huang XF. Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Exp Brain Res 2006;172:556–60.

    PubMed  CAS  Google Scholar 

  89. Degenhardt L, Hall W. Is cannabis use a contributory cause of psychosis? Can J Psychiatry 2006;51:556–65.

    PubMed  Google Scholar 

  90. Skosnik PD, Krishnan GP, Aydt EE, Kuhlenshmidt HA, O’donnell BF. Psychophysiological evidence of altered neural synchronization in cannabis use: relationship to schizotypy. Am J Psychiatry 2006;163:1798–805.

    PubMed  Google Scholar 

  91. Martinez-Gras I, Hoenicka J, Ponce G, et al. (AAT)n repeat in the cannabinoid receptor gene, CNR1: association with schizophrenia in a Spanish population. Eur Arch Psychiatry Clin Neurosci 2006;256:437–41.

    PubMed  Google Scholar 

  92. Weiser M, Noy S. Interpreting the association between cannabis use and increased risk for schizophrenia. Dialogues Clin Neurosci 2005;7:81–5.

    PubMed  Google Scholar 

  93. Ujike H, Takaki M, Nakata K, et al. CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. Mol Psychiatry 2002;7:515–8.

    PubMed  CAS  Google Scholar 

  94. Leroy S, Griffon N, Bourdel MC, Olie JP, Poirier MF, Krebs MO. Schizophrenia and the cannabinoid receptor type 1 (CB1): association study using a single-base polymorphism in coding exon 1. Am J Med Genet 2001;105:749–52.

    PubMed  CAS  Google Scholar 

  95. Vinod KY, Hungund BL. Role of the endocannabinoid system in depression and suicide. Trends Pharmacol Sci 2006;27:539–45.

    PubMed  CAS  Google Scholar 

  96. Gobbi G, Bambico FR, Mangieri R, et al. Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci U S A 2005;102:18620–5.

    PubMed  CAS  Google Scholar 

  97. Hohmann AG, Suplita RL. Endocannabinoid mechanisms of pain modulation. AAPS J 2006;8:E693–708.

    PubMed  CAS  Google Scholar 

  98. Mbvundula EC, Rainsford KD, Bunning RA. Cannabinoids in pain and inflammation. Inflammopharmacology 2004;12:99–114.

    PubMed  CAS  Google Scholar 

  99. Barnes MP. Sativex: clinical efficacy and tolerability in the treatment of symptoms of multiple sclerosis and neuropathic pain. Expert Opin Pharmacother 2006;7:607–15.

    PubMed  CAS  Google Scholar 

  100. Rog DJ, Nurmikko TJ, Friede T, Young CA. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 2005;65:812–9.

    PubMed  Google Scholar 

  101. Corchero J, Manzanares J, Fuentes JA. Cannabinoid/opioid crosstalk in the central nervous system. Crit Rev Neurobiol 2004;16:159–72.

    PubMed  CAS  Google Scholar 

  102. Steffens S, Veillard NR, Arnaud C, et al. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 2005;434:782–6.

    PubMed  CAS  Google Scholar 

  103. Herrera B, Carracedo A, ez-Zaera M, Guzman M, Velasco G. p38 MAPK is involved in CB2 receptor-induced apoptosis of human leukaemia cells. FEBS Lett 2005;579:5084–8.

    PubMed  CAS  Google Scholar 

  104. Mathison R, Ho W, Pittman QJ, Davison JS, Sharkey KA. Effects of cannabinoid receptor-2 activation on accelerated gastrointestinal transit in lipopolysaccharide-treated rats. Br J Pharmacol 2004;142:1247–54.

    PubMed  CAS  Google Scholar 

  105. Wasmuth HE, Trautwein C. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Hepatology 2007;45:543–4.

    PubMed  Google Scholar 

  106. Teixeira-Clerc F, Julien B, Grenard P, et al. The endocannabinoid system as a novel target for the treatment of liver fibrosis [in French]. Pathol Biol (Paris) 2007 Apr 3; [Epub ahead of print].

Download references

Acknowledgements

K.V.L. is a Senior Clinical Investigator of the Research Foundation - Flanders (Belgium) (FWO). Financial support from the Research Council of the Katholieke Universiteit Leuven (OT/05/58) and the Fund for Scientific Research, Flanders, Belgium (FWO/G.0548.06) is gratefully acknowledged. The author expresses thanks to Dr. E. van Buchem, MD, for critical revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Van Laere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Laere, K. In vivo imaging of the endocannabinoid system: a novel window to a central modulatory mechanism in humans. Eur J Nucl Med Mol Imaging 34, 1719–1726 (2007). https://doi.org/10.1007/s00259-007-0505-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0505-3

Navigation