Skip to main content

Advertisement

Log in

Quantitative radioimmunoPET imaging of EphA2 in tumor-bearing mice

  • Molecular imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

EphA2 receptor tyrosine kinase is significantly overexpressed in a wide variety of cancer types. High EphA2 expression has been correlated with increased metastatic potential and poor patient survival. Although many recent reports have focused on blocking the EphA2 signaling pathway in cancer, the in vivo imaging of EphA2 has not yet been investigated.

Methods

We labeled 1C1, a humanized monoclonal antibody against both human and murine EphA2, with 64Cu through the chelating agent 1,4,7,10-tetraazacyclododecane N,N′,N″,N″′-tetraacetic acid (DOTA) and carried out positron emission tomography (PET) imaging of eight tumor models with different EphA2 expression levels. Western blotting of tumor tissue lysate was performed to correlate the EphA2 expression level with 64Cu-DOTA-1C1 uptake in the tumors. Immunofluorescence staining and biodistribution studies were also carried out to validate the in vivo results.

Results

The radiolabeling yield was 88.9 ± 9.5% (n = 7) and the specific activity of 64Cu-DOTA-1C1 was 1.32 ± 0.14 GBq/mg of 1C1 mAb. The antibody retained antigen-binding affinity/specificity after DOTA conjugation as measured by FACS analysis. The uptake of 64Cu-DOTA-1C1 in CT-26 tumors was as high as 25.1 ± 2.5 %ID/g (n = 3) at 18 h post injection. 64Cu-DOTA-IgG, an isotype-matched control, exhibited minimal non-specific uptake in all eight tumor models. In vivo EphA2 specificity of 64Cu-DOTA-1C1 was confirmed by successful blocking of CT-26 tumor uptake by unlabeled 1C1. Most importantly, the tumor uptake value obtained from PET imaging had excellent linear correlation with the relative tumor tissue EphA2 expression level measured by Western blot, where r 2 equals 0.90 and 0.92 at 18 h and 42 h post injection, respectively.

Conclusion

The tumor uptake of 64Cu-DOTA-1C1 measured by microPET imaging reflects tumor EphA2 expression level in vivo. This is, to our knowledge, the first report of quantitative radioimmunoPET imaging of EphA2 in living subjects. Future clinical investigation of 64Cu-DOTA-1C1 is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheng N, Brantley DM, Chen J. The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev 2002;13:75–85.

    Article  PubMed  CAS  Google Scholar 

  2. Brantley-Sieders D, Schmidt S, Parker M, Chen J. Eph receptor tyrosine kinases in tumor and tumor microenvironment. Curr Pharm Des 2004;10:3431–42.

    Article  PubMed  CAS  Google Scholar 

  3. Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE, et al. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 1996;17:9–19.

    Article  PubMed  CAS  Google Scholar 

  4. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998;93:741–53.

    Article  PubMed  CAS  Google Scholar 

  5. Saito T, Masuda N, Miyazaki T, Kanoh K, Suzuki H, Shimura T, et al. Expression of EphA2 and E-cadherin in colorectal cancer: correlation with cancer metastasis. Oncol Rep 2004;11:605–11.

    PubMed  CAS  Google Scholar 

  6. Walker-Daniels J, Coffman K, Azimi M, Rhim JS, Bostwick DG, Snyder P, et al. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate 1999;41:275–80.

    Article  PubMed  CAS  Google Scholar 

  7. Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 2001;61:2301–6.

    PubMed  CAS  Google Scholar 

  8. Thaker PH, Deavers M, Celestino J, Thornton A, Fletcher MS, Landen CN, et al. EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res 2004;10:5145–50.

    Article  PubMed  CAS  Google Scholar 

  9. Kinch MS, Moore MB, Harpole DH, Jr. Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin Cancer Res 2003;9:613–8.

    PubMed  CAS  Google Scholar 

  10. Ireton RC, Chen J. EphA2 receptor tyrosine kinase as a promising target for cancer therapeutics. Curr Cancer Drug Targets 2005;5:149–57.

    Article  PubMed  CAS  Google Scholar 

  11. Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS. Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res 2002;62:2840–7.

    PubMed  CAS  Google Scholar 

  12. Landen CN Jr, Lu C, Han LY, Coffman KT, Bruckheimer E, Halder J, et al. Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer. J Natl Cancer Inst 2006;98:1558–70.

    Article  PubMed  CAS  Google Scholar 

  13. Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 2005;65:6910–8.

    Article  PubMed  CAS  Google Scholar 

  14. Nasreen N, Mohammed KA, Antony VB. Silencing the receptor EphA2 suppresses the growth and haptotaxis of malignant mesothelioma cells. Cancer 2006;107:2425–35.

    Article  PubMed  CAS  Google Scholar 

  15. Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, et al. Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 2002;21:7011–26.

    Article  PubMed  CAS  Google Scholar 

  16. Dobrzanski P, Hunter K, Jones-Bolin S, Chang H, Robinson C, Pritchard S, et al. Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res 2004;64:910–9.

    Article  PubMed  CAS  Google Scholar 

  17. Chen J, Hicks D, Brantley-Sieders D, Cheng N, McCollum GW, Qi-Werdich X, et al. Inhibition of retinal neovascularization by soluble EphA2 receptor. Exp Eye Res 2006;82:664–73.

    Article  PubMed  CAS  Google Scholar 

  18. Noblitt LW, Bangari DS, Shukla S, Knapp DW, Mohammed S, Kinch MS, et al. Decreased tumorigenic potential of EphA2-overexpressing breast cancer cells following treatment with adenoviral vectors that express EphrinA1. Cancer Gene Ther 2004;11:757–66.

    Article  PubMed  CAS  Google Scholar 

  19. Koolpe M, Dail M, Pasquale EB. An ephrin mimetic peptide that selectively targets the EphA2 receptor. J Biol Chem 2002;277:46974–9.

    Article  PubMed  CAS  Google Scholar 

  20. Alves PM, Faure O, Graff-Dubois S, Gross DA, Cornet S, Chouaib S, et al. EphA2 as target of anticancer immunotherapy: identification of HLA-A*0201-restricted epitopes. Cancer Res 2003;63:8476–80.

    PubMed  CAS  Google Scholar 

  21. Guo H, Miao H, Gerber L, Singh J, Denning MF, Gilliam AC, et al. Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res 2006;66:7050–8.

    Article  PubMed  CAS  Google Scholar 

  22. Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up anti-angiogenic drug development. Mol Cancer Ther 2006;5:2624–33.

    Article  PubMed  CAS  Google Scholar 

  23. Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X. In vitro and in vivo characterization of 64Cu-labeled AbegrinTM, a humanized monoclonal antibody against integrin αvβ3. Cancer Res 2006;66:9673–81.

    Article  PubMed  CAS  Google Scholar 

  24. Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47:2048–56.

    PubMed  CAS  Google Scholar 

  25. Meares CF, McCall MJ, Reardan DT, Goodwin DA, Diamanti CI, McTigue M. Conjugation of antibodies with bifunctional chelating agents: isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions. Anal Biochem 1984;142:68–78.

    Article  PubMed  CAS  Google Scholar 

  26. Cai W, Olafsen T, Zhang X, Cao Q, Gambhir SS, Williams LE, et al. PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 2007;48:304–10.

    Article  PubMed  CAS  Google Scholar 

  27. Cai W, Chen K, He L, Cao Q, Koong A, Chen X. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 2007;34:850–8.

    Article  PubMed  CAS  Google Scholar 

  28. Ebrahimnejad A, Flayeh R, Unteregger G, Wagener C, Brummer J. Cell adhesion molecule CEACAM1 associates with paxillin in granulocytes and epithelial and endothelial cells. Exp Cell Res 2000;260:365–73.

    Article  PubMed  CAS  Google Scholar 

  29. Sgouros G. Dosimetry of internal emitters. J Nucl Med 2005;46 Suppl 1:18S–27S.

    PubMed  Google Scholar 

  30. Anderson CJ, Connett JM, Schwarz SW, Rocque PA, Guo LW, Philpott GW, et al. Copper-64-labeled antibodies for PET imaging. J Nucl Med 1992;33:1685–91.

    PubMed  CAS  Google Scholar 

  31. Cutler PD, Schwarz SW, Anderson CJ, Connett JM, Welch MJ, Philpott GW, et al. Dosimetry of copper-64-labeled monoclonal antibody 1A3 as determined by PET imaging of the torso. J Nucl Med 1995;36:2363–71.

    PubMed  CAS  Google Scholar 

  32. Kataoka H, Igarashi H, Kanamori M, Ihara M, Wang JD, Wang YJ, et al. Correlation of EPHA2 overexpression with high microvessel count in human primary colorectal cancer. Cancer Sci 2004;95:136–41.

    Article  PubMed  CAS  Google Scholar 

  33. Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 2000;19:6043–52.

    Article  PubMed  CAS  Google Scholar 

  34. Kiewlich D, Zhang J, Gross C, Xia W, Larsen B, Cobb RR, et al. Anti-EphA2 antibodies decrease EphA2 protein levels in murine CT26 colorectal and human MDA-231 breast tumors but do not inhibit tumor growth. Neoplasia 2006;8:18–30.

    Article  PubMed  CAS  Google Scholar 

  35. Cai W, Zhang X, Wu Y, Chen X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide (18F-FBEM), and the synthesis of RGD peptide-based tracer for PET imaging of avb3 integrin expression. J Nucl Med 2006;47:1172–80.

    PubMed  CAS  Google Scholar 

  36. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2:47–52.

    Article  CAS  PubMed  Google Scholar 

  37. Zimmermann K, Grunberg J, Honer M, Ametamey S, Schubiger PA, Novak-Hofer I. Targeting of renal carcinoma with 67/64Cu-labeled anti-L1-CAM antibody chCE7: selection of copper ligands and PET imaging. Nucl Med Biol 2003;30:417–27.

    Article  PubMed  CAS  Google Scholar 

  38. Knogler K, Grunberg J, Novak-Hofer I, Zimmermann K, Schubiger PA. Evaluation of 177Lu-DOTA-labeled aglycosylated monoclonal anti-L1-CAM antibody chCE7: influence of the number of chelators on the in vitro and in vivo properties. Nucl Med Biol 2006;33:883–9.

    Article  PubMed  CAS  Google Scholar 

  39. Sharkey RM, Cardillo TM, Rossi EA, Chang CH, Karacay H, McBride WJ, et al. Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med 2005;11:1250–5.

    Article  PubMed  CAS  Google Scholar 

  40. Paganelli G, Chinol M. Radioimmunotherapy: is avidin-biotin pretargeting the preferred choice among pretargeting methods? Eur J Nucl Med Mol Imaging 2003;30:773–6.

    Article  PubMed  Google Scholar 

  41. Liu G, He J, Dou S, Gupta S, Rusckowski M, Hnatowich DJ. Further investigations of morpholino pretargeting in mice-establishing quantitative relations in tumor. Eur J Nucl Med Mol Imaging 2005;32:1115–23.

    Google Scholar 

Download references

Acknowledgements

This project was financially supported by MedImmune, Inc., National Institute of Biomedical Imaging and Bioengineering (NIBIB) (R21 EB001785), National Cancer Institute (NCI) (R21 CA102123, P50 CA114747, U54 CA119367, and R24 CA93862), Department of Defense (DOD) (W81XWH-04-1-0697, W81XWH-06-1-0665, W81XWH-06-1-0042, and DAMD17-03-1-0143), and a Benedict Cassen Postdoctoral Fellowship from the Education and Research Foundation of the Society of Nuclear Medicine (to W. Cai). We thank Lina He for her excellent technical support and the cyclotron team at University of Wisconsin, Madison for 64Cu production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen.

Additional information

Weibo Cai and Alireza Ebrahimnejad contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, W., Ebrahimnejad, A., Chen, K. et al. Quantitative radioimmunoPET imaging of EphA2 in tumor-bearing mice. Eur J Nucl Med Mol Imaging 34, 2024–2036 (2007). https://doi.org/10.1007/s00259-007-0503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0503-5

Keywords

Navigation