Skip to main content
Log in

In vivo imaging of tumour angiogenesis in mice with the αvβ3 integrin-targeted tracer 99mTc-RAFT-RGD

  • Molecular imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The molecular imaging of tumour neoangiogenesis currently represents a major field of research for the diagnostic and treatment strategy of solid tumours. Endothelial cells from tumour neovessels overexpress the αvβ3 integrin, which selectively binds to Arg-Gly-Asp (RGD)-containing peptides. We evaluated the potential of the novel radiotracer 99mTc-RAFT-RGD for the non-invasive molecular imaging of αvβ3 integrin expression in mice models of tumour development.

Methods

99mTc-RAFT-RGD, 99mTc-cRGD (specific control) and 99mTc-RAFT-RAD (non-specific control) were injected intravenously to mice bearing B16F0 or TS/A-pc tumours. In vivo whole-body tomographic imaging and post-mortem biodistribution studies were performed 60 min following tracer injection. Adjacent tumour slices were used to compare the localisation of neovessels from immunostaining and the pattern of 99mTc-RAFT-RGD uptake from autoradiographic ex vivo imaging.

Results

Biodistribution studies indicated that 99mTc-RAFT-RGD tumour uptake was significantly higher than that of 99mTc-RAFT-RAD in B16F0 (2.4±0.5 vs 1.0±0.1%ID/g, respectively) and in TS/A-pc tumours (2.7±0.8 vs 0.7±0.1%ID/g, respectively). Immunohistochemical and autoradiographic studies indicated that 99mTc-RAFT-RGD intratumoural uptake preferentially occurred in angiogenic areas. Tomographic imaging allowed tumour visualisation following injection of 99mTc-RAFT-RGD and 99mTc-cRGD with similar tumour-to-contralateral muscle (T/CM) ratios in B16F0 and in TS/A-pc tumours whereas 99mTc-RAFT-RAD T/CM ratios did not allow tumour imaging. In accordance with the higher level of αvβ3 integrin expression on TS/A-pc tumours than on B16F0 tumours as determined from western blot and immunoprecipitation analyses, the 99mTc-RAFT-RGD T/CM ratio was significantly higher in TS/A-pc than in B16F0 tumours.

Conclusion

99mTc-RAFT-RGD allowed the in vivo imaging of αvβ3 integrin tumour expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;29(Suppl 16):15–8.

    PubMed  CAS  Google Scholar 

  2. Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al. Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 2005;46:1333–41.

    PubMed  CAS  Google Scholar 

  3. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Non-invasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]-galacto-RGD. PLoS Med 2005;2:244–52.

    Article  CAS  Google Scholar 

  4. Tucker GC. Integrins: molecular targets in cancer therapy. Curr Oncol Rep 2006;8:96–103.

    Article  PubMed  CAS  Google Scholar 

  5. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–6.

    Article  PubMed  CAS  Google Scholar 

  6. Stupack DG, Cheresh DA. Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 2002;115(Pt 19):3729–38.

    Article  PubMed  CAS  Google Scholar 

  7. Rupp PA, Czirok A, Little CD. Alphavbeta3 integrin-dependent endothelial cell dynamics in vivo. Development 2004;131:2887–97.

    Article  PubMed  CAS  Google Scholar 

  8. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987;238:491–7.

    Article  PubMed  CAS  Google Scholar 

  9. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994;264:569–71.

    Article  PubMed  CAS  Google Scholar 

  10. Horton MA. The alpha v beta 3 integrin “vitronectin receptor”. Int J Biochem Cell Biol 1997;29:721–5.

    Article  PubMed  CAS  Google Scholar 

  11. Chen X, Park R, Shahinian AH, Bading JR, Conti PS. Pharmacokinetics and tumor retention of [125]I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 2004;31:11–9.

    Article  PubMed  CAS  Google Scholar 

  12. Gruber G, Hess J, Stiefel C, Aebersold DM, Zimmer Y, Greiner RH, et al. Correlation between the tumoral expression of beta3-integrin and outcome in cervical cancer patients who had undergone radiotherapy. Br J Cancer 2005;92:41–6.

    Article  PubMed  CAS  Google Scholar 

  13. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11–25.

    Article  PubMed  CAS  Google Scholar 

  14. Ruoslahti E. The RGD story: a personal account. Matrix Biology 2003;22:459–65.

    Article  PubMed  CAS  Google Scholar 

  15. Eskens FA, Dumez H, Hoekstra R, Perschl A, Brindley C, Bottcher S, et al. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumors. Eur J Cancer 2003;39:917–26.

    Article  PubMed  CAS  Google Scholar 

  16. Raguse JD, Gath HJ, Bier J, Riess H, Oettle H. Cilengitide (EMD 121974) arrests the growth of a heavily pretreated highly vascularised head and neck tumor. Oral Oncol 2004;40:228–30.

    Article  PubMed  CAS  Google Scholar 

  17. Burke PA, DeNardo SJ, Miers LA, Lamborn KR, Matzku S, DeNardo GL. Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 2002;62:4263–72.

    PubMed  CAS  Google Scholar 

  18. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994;79:1157–64.

    Article  PubMed  CAS  Google Scholar 

  19. Harris TD, Kalogeropoulos S, Nguyen T, Liu S, Bartis J, Ellars C, et al. Design, synthesis, and evaluation of radiolabeled integrin alpha v beta 3 receptor antagonists for tumor imaging and radiotherapy. Cancer Biother Radiopharm 2003;18:627–41.

    Article  PubMed  CAS  Google Scholar 

  20. Chen X, Park R, Khankaldyyan V, Gonzales-Gomez I, Tohme M, Moats RA, et al. Longitudinal microPET imaging of brain tumor growth with F-18-labeled RGD peptide. Mol Imaging Biol 2006;8:9–15.

    Article  PubMed  CAS  Google Scholar 

  21. Fani M, Psimadas D, Zikos C, Xanthopoulos S, Loudos GK, Bouziotis P, et al. Comparative evaluation of linear and cyclic 99mTc-RGD peptides for targeting of integrins in tumor angiogenesis. Anticancer Res 2006;26:431–4.

    PubMed  CAS  Google Scholar 

  22. Castel S, Pagan R, Mitjans F, Piulats J, Goodman S, Jonczyk A, et al. RGD peptides and monoclonal antibodies, antagonists of alpha(v)-integrin, enter the cells by independent endocytic pathways. Lab Invest 2001;81:1615–26.

    PubMed  CAS  Google Scholar 

  23. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, et al. Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res 2002;62:6146–51.

    PubMed  CAS  Google Scholar 

  24. Kok RJ, Schraa AJ, Bos EJ, Moorlag HE, Asgeirsdottir SA, Everts M, et al. Preparation and functional evaluation of RGD-modified proteins as alpha(v)beta(3) integrin directed therapeutics. Bioconjug Chem 2002;13:128–35.

    Article  PubMed  CAS  Google Scholar 

  25. Thumshirn G, Hersel U, Goodman SL, Kessler H. Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry 2003;9:2717–25.

    Article  PubMed  CAS  Google Scholar 

  26. Garanger E, Boturyn D, Jin Z, Dumy P, Favrot MC, Coll JL. New multifunctional molecular conjugate vector for targeting, imaging, and therapy of tumors. Mol Ther 2005;12:1168–75.

    Article  PubMed  CAS  Google Scholar 

  27. Boturyn D, Dumy P. A convenient access to alpha(V) beta(3)/alpha(V) beta(5) integrin ligand conjugates: regioselective solid-phase functionalisation of an RGD based peptide. Tetrahedron Lett 2001;42:2787–90.

    Article  CAS  Google Scholar 

  28. Boturyn D, Coll JL, Garanger E, Favrot MC, Dumy P. Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. J Am Chem Soc 2004;126:5730–9.

    Article  PubMed  CAS  Google Scholar 

  29. Garanger E, Boturyn D, Coll JL, Favrot MC, Dumy P. Multivalent RGD synthetic peptides as potent alphaVbeta3 integrin ligands. Org Biomol Chem 2006;4:1958–65.

    Article  PubMed  CAS  Google Scholar 

  30. Cowden Dahl KD, Robertson SE, Weaver VM, Simon MC. Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression. Mol Biol Cell 2005;16:1901–12.

    Article  PubMed  CAS  Google Scholar 

  31. Denoyer D, Perek N, Le Jeune N, Dubois F. Spectrum of radiopharmaceuticals in nuclear oncology. Curr Cancer Drug Targets 2006;6:181–96.

    Article  PubMed  CAS  Google Scholar 

  32. Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 2004;10:1439–55.

    Article  PubMed  CAS  Google Scholar 

  33. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct alpha v integrins. Science 1995;270:1500–2.

    Article  PubMed  CAS  Google Scholar 

  34. Pecheur I, Peyruchaud O, Serre CM, Guglielmi J, Voland C, Bourre F, et al. Integrin alpha[v]beta3 expression confers on tumor cells a greater propensity to metastasize to bone. Faseb J 2002;16:1266–8.

    PubMed  CAS  Google Scholar 

  35. Rolli M, Fransvea E, Pilch J, Saven A, Felding-Habermann B. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:9482–7.

    Article  PubMed  CAS  Google Scholar 

  36. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of alpha(v)beta(3) integrin expression using F-18-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61:1781–5.

    PubMed  CAS  Google Scholar 

  37. Jin ZH, Josserand V, Razkin J, Garanger E, Boturyn D, Favrot MC, et al. Noninvasive optical imaging of ovarian metastases using Cy5-labeled RAFT-c(-RGDfK-)4. Mol Imaging 2006;5:188–97.

    PubMed  Google Scholar 

  38. Jin ZH, Razkin J, Josserand V, Boturyn D, Grichine A, Texier I, et al. In vivo non-invasive optical imaging of receptor-mediated RGD internalization using self-quenched Cy5-labeled RAFT-c(-RGDfK-)4. Mol Imaging 2007;6:43–55.

    PubMed  CAS  Google Scholar 

  39. Dijkgraaf I, Kruijtzer JA, Liu S, Soede AC, Oyen WJ, Corstens FH, et al. Improved targeting of the alpha(v)beta (3) integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging 2007;34:267–73.

    Article  PubMed  CAS  Google Scholar 

  40. Liu S, Hsieh WY, Jiang Y, Kim YS, Sreerama SG, Chen X, et al. Evaluation of a 99mTc-labeled cyclic RGD tetramer for noninvasive imaging integrin alpha(v)beta3-positive breast cancer. Bioconjug Chem 2007;18:438–46.

    Article  PubMed  CAS  Google Scholar 

  41. Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS. Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 2004;3:96–104.

    Article  PubMed  CAS  Google Scholar 

  42. Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al. MicroPET imaging of glioma integrin alphav beta3 expression using [64]Cu-labeled tetrameric RGD peptide. J Nucl Med 2005;46:1707–18.

    PubMed  CAS  Google Scholar 

  43. Trejtnar F, Laznicek M, Laznickova A, Mather SJ. Pharmacokinetics and renal handling of 99mTc-labeled peptides. J Nucl Med 2000;41:177–82.

    PubMed  CAS  Google Scholar 

  44. Mulder WJ, Strijkers GJ, Habets JW, Bleeker EJ, van der Schaft DW, Storm G, et al. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 2005;19:2008–10.

    PubMed  CAS  Google Scholar 

  45. Hwang R, Varner J. The role of integrins in tumor angiogenesis. Hematol Oncol Clin North Am 2004;18:991–1006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All the experiments described in the present study were approved by the Animal Care and Use Committee of the Centre de Recherche et Service de Santé des Armées (CRSSA, La Tronche, France, Authorisation # 2004/25.0) and the experiments were performed by an authorised individual (L. Sancey, authorisation # 38 05 32). Financial support was provided by the National Institute for Health and Medical Research (INSERM), the Ligue Nationale Contre le Cancer (LNCC) and the Association pour la Recherche contre le Cancer (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent M. Riou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sancey, L., Ardisson, V., Riou, L.M. et al. In vivo imaging of tumour angiogenesis in mice with the αvβ3 integrin-targeted tracer 99mTc-RAFT-RGD. Eur J Nucl Med Mol Imaging 34, 2037–2047 (2007). https://doi.org/10.1007/s00259-007-0497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0497-z

Keywords

Navigation