Skip to main content
Log in

Attenuation correction in cardiac PET/CT with three different CT protocols: a comparison with conventional PET

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

CT-based attenuation correction may influence cardiac PET owing to its higher susceptibility to misalignment compared with conventional 68Ge transmission scans. The aims of this study were to evaluate whether CT attenuation correction leads to changes in tracer distribution compared with conventional cardiac PET and to determine a suitable CT protocol.

Methods

A total of 27 patients underwent PET/CT and subsequently a PET scan. Twenty patients received a low-dose CT (LDCT group; 120 kV, 26 mA, 8-s scan time), seven patients a slow CT (SCT group; 120 kV, 99 mA, 46-s scan time) and ten patients an ultra-low-dose CT (ULDCT group; 80 kV, 13 mA, 5-s scan time) as the transmission scan in PET/CT. Polar maps were divided into 17 segments and regression analysis was computed in every scan pair (CT attenuation corrected–68Ge attenuation corrected). Correlation coefficient (r), the slope (s) and the offset (os) of the regression line were determined. Visual assessment of misalignment between the transmission and emission data was performed. The effective dose of the different transmission scans was calculated.

Results

Overall, there was a moderate correlation between the mean values measured in all segments on PET/CT and on PET when using LDCT (r=0.78, p<0.0001), SCT (r=0.79, p<0.0001) and ULDCT (r=0.82, p<0.0001). No differences were observed when comparing the scores assigned in the visual misalignment assessment in the three groups (p=0.12). The differences between the results from the regression analysis observed in the respective groups were not statistically significant (Kruskal-Wallis p=0.11 for r, p=0.67 for s and p=0.27 for os). The effective dose was lowest for the ULDCT.

Conclusion

Our study shows that CT-based attenuation correction is feasible for cardiac PET imaging. The results indicate that ultra-low-dose CT is the preferable choice for transmission scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marshall RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 1983;67(4):766–78.

    PubMed  CAS  Google Scholar 

  2. Schwaiger M, Brunken R, Grover-McKay M, Krivokapich J, Child J, Tillisch JH, et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 1986;8(4):800–8.

    Article  PubMed  CAS  Google Scholar 

  3. Haas F, Haehnel CJ, Picker W, Nekolla S, Martinoff S, Meisner H, et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 1997;30(7):1693–700.

    Article  PubMed  CAS  Google Scholar 

  4. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314(14):884–8.

    Article  PubMed  CAS  Google Scholar 

  5. Beanlands RS, Ruddy TD, deKemp RA, Iwanochko RM, Coates G, Freeman M, et al. Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol 2002;40(10):1735–43.

    Article  PubMed  Google Scholar 

  6. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 2005;46(1):75–88.

    PubMed  Google Scholar 

  7. Matsunari I, Boning G, Ziegler SI, Kosa I, Nekolla SG, Ficaro EP, et al. Effects of misalignment between transmission and emission scans on attenuation-corrected cardiac SPECT. J Nucl Med 1998;39(3):411–6.

    PubMed  CAS  Google Scholar 

  8. Pitman AG, Kalff V, Van Every B, Risa B, Barnden LR, Kelly MJ. Effect of mechanically simulated diaphragmatic respiratory motion on myocardial SPECT processed with and without attenuation correction. J Nucl Med 2002;43(9):1259–67.

    PubMed  Google Scholar 

  9. McCord ME, Bacharach SL, Bonow RO, Dilsizian V, Cuocolo A, Freedman N. Misalignment between PET transmission and emission scans: its effect on myocardial imaging. J Nucl Med 1992;33(6):1209–14; discussion 1214–5.

    Google Scholar 

  10. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25(10):2046–53.

    Article  PubMed  CAS  Google Scholar 

  11. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41(8):1369–79.

    PubMed  CAS  Google Scholar 

  12. Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 2003;30(4):588–96.

    Article  PubMed  Google Scholar 

  13. Chin BB, Nakamoto Y, Kraitchman DL, Marshall L, Wahl R. PET-CT evaluation of 2-deoxy-2-[18F]fluoro-D-glucose myocardial uptake: effect of respiratory motion. Mol Imaging Biol 2003;5(2):57–64.

    Article  PubMed  Google Scholar 

  14. Goerres GW, Kamel E, Heidelberg TN, Schwitter MR, Burger C, von Schulthess GK. PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging 2002;29(3):351–60.

    Article  PubMed  CAS  Google Scholar 

  15. Wu TH, Huang YH, Lee JJ, Wang SC, Su CT, Chen LK, et al. Radiation exposure during transmission measurements: comparison between CT- and germanium-based techniques with a current PET scanner. Eur J Nucl Med Mol Imaging 2004;31(1):38–43.

    Article  PubMed  Google Scholar 

  16. Lagerwaard FJ, Van Sornsen de Koste JR, Nijssen-Visser MR, Schuchhard-Schipper RH, Oei SS, Munne A, et al. Multiple “slow” CT scans for incorporating lung tumor mobility in radiotherapy planning. Int J Radiat Oncol Biol Phys 2001;51(4):932–7.

    PubMed  CAS  Google Scholar 

  17. Pan T, Mawlawi O, Nehmeh SA, Erdi YE, Luo D, Liu HH, et al. Attenuation correction of PET Images with respiration-averaged CT images in PET/CT. J Nucl Med 2005;46(9):1481–7.

    PubMed  Google Scholar 

  18. Kalender WA, Schmidt B, Zankl M, Schmidt M. A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 1999;9(3):555–62.

    Article  PubMed  CAS  Google Scholar 

  19. Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002;29(7):922–7.

    Article  PubMed  CAS  Google Scholar 

  20. Nekolla SG, Miethaner C, Nguyen N, Ziegler SI, Schwaiger M. Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med 1998;25(9):1313–21.

    Article  PubMed  CAS  Google Scholar 

  21. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging 2002;18(1):539–42.

    PubMed  Google Scholar 

  22. Koepfli P, Hany TF, Wyss CA, Namdar M, Burger C, Konstantinidis AV, et al. CT attenuation correction for myocardial perfusion quantification using a PET/CT hybrid scanner. J Nucl Med 2004;45(4):537–42.

    PubMed  Google Scholar 

  23. Jessen K, Panzer W, Shrimpton P. EUR 16262. European guidelines on quality criteria for computed tomography. Luxemburg: Office for official publications of the European Communities; 2000.

    Google Scholar 

  24. Livieratos L, Rajappan K, Bailey DL, Rimoldi O, Camici PG. Respiratory gating of cardiac PET data [abstract]. Eur J Nucl Med Mol Imaging 2003;30 Supplement 2:174.

    Google Scholar 

  25. Livieratos L, Stegger L, Bloomfield PM, Schafers K, Bailey DL, Camici PG. Rigid-body transformation of list-mode projection data for respiratory motion correction in cardiac PET. Phys Med Biol 2005;50(14):3313–22.

    Article  PubMed  CAS  Google Scholar 

  26. Loghin C, Sdringola S, Gould KL. Common artifacts in PET myocardial perfusion images due to attenuation-emission misregistration: clinical significance, causes, and solutions. J Nucl Med 2004;45(6):1029–39.

    PubMed  Google Scholar 

  27. Nehmeh SA, Erdi YE, Pan T, Yorke E, Mageras GS, Rosenzweig KE, et al. Quantitation of respiratory motion during 4D-PET/CT acquisition. Med Phys 2004;31(6):1333–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kamel E, Hany TF, Burger C, Treyer V, Lonn AH, von Schulthess GK, et al. CT vs 68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current. Eur J Nucl Med Mol Imaging 2002;29(3):346–50.

    Article  PubMed  CAS  Google Scholar 

  29. van der Weerdt AP, Boellaard R, Knaapen P, Visser CA, Lammertsma AA, Visser FC. Postinjection transmission scanning in myocardial 18F-FDG PET studies using both filtered backprojection and iterative reconstruction. J Nucl Med 2004;45(2):169–75.

    PubMed  Google Scholar 

  30. Xu EZ, Mullani NA, Gould KL, Anderson WL. A segmented attenuation correction for PET. J Nucl Med 1991;32(1):161–5.

    PubMed  CAS  Google Scholar 

  31. Meikle SR, Dahlbom M, Cherry SR. Attenuation correction using count-limited transmission data in positron emission tomography. J Nucl Med 1993;34(1):143–50.

    PubMed  CAS  Google Scholar 

  32. Nehmeh SA, Erdi YE, Mageras GS, Pan T, Yorke E, Mostafawi H, et al. Improved accuracy in image coregistration and tumor quantitation of pulmonary lesions of NSCL patients by respiratory correlated acquistion on PET/CT [abstract]. J Nucl Med 2003;44 Supplement:124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Souvatzoglou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souvatzoglou, M., Bengel, F., Busch, R. et al. Attenuation correction in cardiac PET/CT with three different CT protocols: a comparison with conventional PET. Eur J Nucl Med Mol Imaging 34, 1991–2000 (2007). https://doi.org/10.1007/s00259-007-0492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0492-4

Keywords

Navigation