Skip to main content

Advertisement

Log in

Early assessment of therapy response in malignant lymphoma with the thymidine analogue [18F]FLT

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to determine whether the thymidine analogue 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) is adequate for early evaluation of the response of malignant lymphoma to antiproliferative treatment in a mouse xenotransplant model.

Methods

Immunodeficient mice bearing a follicular lymphoma xenotransplant were treated with high-dose chemotherapy (cyclophosphamide, n = 10), immunotherapy (CD20 mAb, ibritumomab-tiuxetan, n = 10) or radioimmunotherapy ([90Y]CD20 mAb, Zevalin, n = 10). Forty-eight hours after treatment, antiproliferative effects were assessed with [18F]FLT. Ninety minutes after i.v. injection of 5–10 MBq [18F]FLT, mice were sacrificed and radioactivity within the tumour and normal organs was measured using a gamma counter and calculated as % ID/g. The proliferation fraction in tissue samples derived from treated and untreated tumours was evaluated by Ki-67 immunohistochemistry, which served as the reference for proliferative activity.

Results

In untreated lymphoma, the mean proliferation fraction was 83.6%. After chemotherapy, the mean proliferation fraction decreased to 39.3% (p = 0.0001), after immunotherapy to 77.6% (p = 0.0078) and after radioimmunotherapy to 78.8% (p = 0.014). In none of the animals was a significant change in tumour size observed. In untreated lymphoma, tumoural [18F]FLT uptake was 5.4% ID/g, after chemotherapy it was 1.5% (p = 0.0005), after immunotherapy, 3.9% (non-significant), and after radioimmunotherapy, 5.8% (non-significant).

Conclusion

In a lymphoma xenotransplant model, [18F]FLT detects early antiproliferative drug activity before changes in tumour size are visible. These findings further support the use of [18F]FLT-PET for imaging early response to treatment in malignant lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sanchez-Beato M, Sanchez-Aguilera A, Piris MA. Cell cycle deregulation in B-cell lymphomas. Blood 2003;101:1220–35.

    Article  PubMed  CAS  Google Scholar 

  2. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol 1999;17:1244–53.

    PubMed  CAS  Google Scholar 

  3. Lister TA, Crowther D, Sutcliffe SB, Glatstein E, Canellos GP, Young RC, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol 1989;7:1630–6.

    PubMed  CAS  Google Scholar 

  4. Surbone A, Longo DL, DeVita VT Jr, Ihde DC, Duffey PL, Jaffe ES, et al. Residual abdominal masses in aggressive non-Hodgkin’s lymphoma after combination chemotherapy: significance and management. J Clin Oncol 1988;6:1832–7.

    PubMed  CAS  Google Scholar 

  5. Padhani AR, Husband JE. Are current tumor response criteria relevant for the 21st century? Br J Radiol 2000;73:1031–3.

    PubMed  CAS  Google Scholar 

  6. Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: [18F]FLT versus [18F]FDG. J Nucl Med 2003;44:1426–31.

    PubMed  CAS  Google Scholar 

  7. Sandherr M, von Schilling C, Link T, Stock K, von Bubnoff N, Peschel C, et al. Pitfalls in imaging Hodgkin’s disease with computed tomography and positron emission tomography using fluorine-18-fluorodeoxyglucose. Ann Oncol 2001;12:719–22.

    Article  PubMed  CAS  Google Scholar 

  8. Kazama T, Faria SC, Varavithya V, Phongkitkarun S, Ito H, Macapinlac HA. FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics 2005;25:191–207.

    Article  PubMed  Google Scholar 

  9. Martiat P, Ferrant A, Labar D, Cogneau M, Bol A, Michel C, et al. In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin’s lymphoma using positron emission tomography. J Nucl Med 1988;29:1633–7.

    PubMed  CAS  Google Scholar 

  10. Shields AF, Mankoff DA, Link JM, Graham MM, Eary JF, Kozawa SM, et al. Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 1998;39:1757–62.

    PubMed  CAS  Google Scholar 

  11. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [18F]FLT and positron emission tomography. Nat Med 1998;4:1334–6.

    Article  PubMed  CAS  Google Scholar 

  12. Kong XB, Zhu QY, Vidal PM, Watanabe KA, Polsky B, Armstrong D, et al. Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother 1992;36:808–18.

    PubMed  CAS  Google Scholar 

  13. Sherley JL, Kelly TJ. Regulation of human thymidine kinase during the cell cycle. J Biol Chem 1988;263:8350–8.

    PubMed  CAS  Google Scholar 

  14. Eriksson S, Arner E, Spasokoukotskaja T, Wang L, Karlsson A, Brosjo O, et al. Properties and levels of deoxynucleoside kinases in normal and tumor cells; implications for chemotherapy. Adv Enzyme Regul 1994;34:13–25.

    Article  PubMed  CAS  Google Scholar 

  15. Seitz U, Wagner M, Neumaier B, Wawra E, Glatting G, Leder G, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[18F]fluoro-3′-deoxythymidine ([18F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging 2002; 29:1174–81.

    Article  PubMed  CAS  Google Scholar 

  16. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43:1210–7.

    PubMed  CAS  Google Scholar 

  17. Barthel H, Perumal M, Latigo J, He Q, Brady F, Luthra SK, et al. The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 2005;32:257–63.

    Article  PubMed  CAS  Google Scholar 

  18. Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth KJ, Langstrom B. Rat studies comparing 11C-FMAU, [18F]FLT, and [76Br]BFU as proliferation markers. J Nucl Med 2002;43:1688–98.

    PubMed  CAS  Google Scholar 

  19. Francis DL, Freeman A, Visvikis D, Costa DC, Luthra SK, Novelli M, et al. In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography. Gut 2003;52:1602–6.

    Article  PubMed  CAS  Google Scholar 

  20. Smyczek-Gargya B, Fersis N, Dittmann H, Vogel U, Reischl G, Machulla HJ, et al. PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 2004;31:720–4.

    Article  PubMed  Google Scholar 

  21. Cobben DC, van der Laan BF, Maas B, Vaalburg W, Suurmeijer AJ, Hoekstra HJ, et al. [18F]FLT PET for visualization of laryngeal cancer: comparison with [18F]FDG PET. J Nucl Med 2004;45:226–31.

    PubMed  Google Scholar 

  22. Cobben DC, Elsinga PH, Suurmeijer AJ, Vaalburg W, Maas B, Jager PL, et al. Detection and grading of soft tissue sarcomas of the extremities with [18F]-3′-fluoro-3′-deoxy-l-thymidine. Clin Cancer Res 2004;10:1685–90.

    Article  PubMed  CAS  Google Scholar 

  23. Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ, et al. [18F]3′-deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 2005;32:653–9.

    Article  PubMed  Google Scholar 

  24. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al. Imaging proliferation in brain tumors with [18F]-FLT PET: comparison with [18F]-FDG. J Nucl Med 2005;46:945–52.

    PubMed  CAS  Google Scholar 

  25. van Westreenen HL, Cobben DC, Jager PL, van Dullemen HM, Wesseling J, Elsinga PH. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med 2005;46:400–4.

    PubMed  Google Scholar 

  26. Dittmann H, Dohmen BM, Paulsen F, Eichhorn K, Eschmann SM, Horger M, et al. [18F]FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging 2003;30: 1407–12.

    Article  PubMed  CAS  Google Scholar 

  27. Buck AK, Schirrmeister H, Hetzel M, Von Der Heide M, Halter G, Glatting G, et al. 3-deoxy-3-[18F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 2002;62:3331–4.

    PubMed  CAS  Google Scholar 

  28. Wagner M, Seitz U, Buck A, Neumaier B, Schultheiss S, Bangerter M, et al. 3′-[18F]fluoro-3′-deoxythymidine ([18F]FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Res 2003;63:2681–7.

    PubMed  CAS  Google Scholar 

  29. Buchmann I, Neumaier B, Schreckenberger M, Reske S. [18F]3′-deoxy-3′-fluorothymidine-PET in NHL patients: whole-body biodistribution and imaging of lymphoma manifestations—a pilot study. Cancer Biother Radiopharm 2004;19:436–42.

    PubMed  CAS  Google Scholar 

  30. Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P, et al. In vivo validation of 3′deoxy-3′-[18F]fluorothymidine ([18F]FLT) as a proliferation imaging tracer in humans: correlation of [18F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 2002;8:3315–23.

    PubMed  CAS  Google Scholar 

  31. Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res 2006;66:11055–61.

    Article  PubMed  CAS  Google Scholar 

  32. Machulla HJ, Blocher A, Kuntzsch M. Simplified labeling approach for synthesizing 3′-deoxy-3′[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 2000;24:843–6.

    Article  Google Scholar 

  33. Mikhaeel NG, Timothy AR, O’Doherty MJ, Hain S, Maisey MN. [18F]FDG-PET as a prognostic indicator in the treatment of aggressive non-Hodgkin’s lymphoma—comparison with CT. Leuk Lymphoma 2000;39:543–53.

    PubMed  CAS  Google Scholar 

  34. Kostakoglu L, Goldsmith SJ. 18F-FDG PET evaluation of the response to therapy for lymphoma and for breast, lung, and colorectal carcinoma. J Nucl Med 2003;44:224–39.

    PubMed  Google Scholar 

  35. Romer W, Hanauske AR, Ziegler S, Thodtmann R, Weber W, Fuchs C, et al. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 1998;91:4464–71.

    PubMed  CAS  Google Scholar 

  36. Spaepen K, Stroobants S, Dupont P, Bormans G, Balzarini J, Verhoef G, et al. [18F]FDG PET monitoring of tumor response to chemotherapy: does [18F]FDG uptake correlate with the viable tumor cell fraction? Eur J Nucl Med Mol Imaging 2003;30:682–8.

    Article  PubMed  CAS  Google Scholar 

  37. van Waarde A, Cobben DC, Suurmeijer AJ, Maas B, Vaalburg W, de Vries EF, et al. Selectivity of [18F]FLT and [18F]FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 2004;45:695–700.

    PubMed  Google Scholar 

  38. Buck AK, Hetzel M, Schirrmeister H, Halter G, Moller P, Kratochwil C, et al. Clinical relevance of imaging proliferative activity in lung nodules. Eur J Nucl Med Mol Imaging 2005;32:525–33.

    Article  PubMed  Google Scholar 

  39. Rose AL, Smith BE, Maloney DG. Glucocorticoids and rituximab in vitro: synergistic direct antiproliferative and apoptotic effects. Blood 2002;100:1765–73.

    PubMed  CAS  Google Scholar 

  40. Hainsworth JD. Monoclonal antibody therapy in lymphoid malignancies. Oncologist 2000;5:376–84.

    Article  PubMed  CAS  Google Scholar 

  41. Dittmann H, Dohmen BM, Kehlbach R, Bartusek G, Pritzkow M, Sarbia M, et al. Early changes in [18F]FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging 2002;29:1462–9.

    Article  PubMed  CAS  Google Scholar 

  42. Wiseman GA, Gordon LI, Multani PS, Witzig TE, Spies S, Bartlett NL, et al. Ibritumomab tiuxetan radioimmunotherapy for patients with relapsed or refractory non-Hodgkin lymphoma and mild thrombocytopenia: a phase II multicenter trial. Blood 2002;99:4336–42.

    Article  PubMed  CAS  Google Scholar 

  43. Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y, et al. In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 2001;97:1999–2007.

    Article  PubMed  CAS  Google Scholar 

  44. Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO. Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res 2005;65:4202–10.

    Article  PubMed  CAS  Google Scholar 

  45. Oyama N, Ponde DE, Dence C, Kim J, Tai YC, Welch MJ. Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med 2004;45:519–25.

    PubMed  CAS  Google Scholar 

  46. Sugiyama M, Sakahara H, Sato K, Harada N, Fukumoto D, Kakiuchi T, et al. Evaluation of 3′-deoxy-3′-[18F]-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med 2004;45:1754–8.

    PubMed  CAS  Google Scholar 

  47. Waldherr C, Mellinghoff IK, Tran C, Halpern BS, Rozengurt N, Safaei A, et al. Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET. J Nucl Med 2005;46:114–20.

    PubMed  CAS  Google Scholar 

  48. Shields AF, Briston DA, Chandupatla S, Douglas KA, Lawhorn-Crews J, Collins JM, et al. A simplified analysis of [18F]3′-deoxy-3′-fluorothymidine metabolism and retention. Eur J Nucl Med Mol Imaging 2005;259:1269–75.

    Google Scholar 

  49. Bading JR, Shahinian AH, Vail A, Bathija P, Koszalka GW, Koda RT, et al. Pharmacokinetics of the thymidine analogue 2′-fluoro-5-methyl-1-beta-d-arabinofuranosyluracil (FMAU) in tumor-bearing rats. Nucl Med Biol 2004;31:407–18.

    Article  PubMed  CAS  Google Scholar 

  50. Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth KJ, Langstrom B. Rat studies comparing [11C]FMAU, [18F]FLT, and [76Br]BFU as proliferation markers. J Nucl Med 2002;43:1688–98.

    PubMed  CAS  Google Scholar 

  51. Perumal M, Pillai RG, Barthel H, Leyton J, Latigo JR, Forster M, et al. Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography. Cancer Res 2006;66:8558–64.

    Article  PubMed  CAS  Google Scholar 

  52. Kenny LM, Vigushin DM, Al-Nahhas A, Osman S, Luthra SK, Shousha S, et al. Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 2005;65:10104–12.

    Article  PubMed  CAS  Google Scholar 

  53. Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA. Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med 2005;46:371–80.

    PubMed  CAS  Google Scholar 

  54. Muzi M, Vesselle H, Grierson JR, Mankoff DA, Schmidt RA, Peterson L, et al. Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 2005;46:274–82.

    PubMed  CAS  Google Scholar 

  55. Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, et al. 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 2003;63:3791–8.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by grant Bu 1424/1 from Deutsche Forschungsgemeinschaft (DFG, KFO 120) and grant P.777 (Medical Faculty, University of Ulm). We thank Rolf Kunft for his assistance in digital microscopy. We also thank Gabi Ehmke for performing immunohistochemistry and Robert Stadler for his helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas K. Buck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buck, A.K., Kratochwil, C., Glatting, G. et al. Early assessment of therapy response in malignant lymphoma with the thymidine analogue [18F]FLT. Eur J Nucl Med Mol Imaging 34, 1775–1782 (2007). https://doi.org/10.1007/s00259-007-0452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0452-z

Keywords

Navigation