Skip to main content
Log in

The expanding role of left ventricular functional assessment using gated myocardial perfusion SPECT: the supporting actor is stealing the scene

  • Review article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

Gating of single-photon emission computed tomography (SPECT) has significantly improved the reliability and diagnostic accuracy of myocardial perfusion imaging. The functional parameters derived from this technique, mainly left ventricular volumes and ejection fraction, have been demonstrated to be accurate and reproducible. They are able to increase the detection of severe and extensive coronary artery disease and show a significant incremental prognostic power over perfusion abnormalities. Therefore, the importance given to gated SPECT functional data has progressively grown.

Discussion

This circumstance has further expanded the indications for myocardial perfusion imaging and strengthened its position among the different imaging modalities. Moreover, several studies show that the evaluation of ventricular function may have a leading part in justifying the execution of perfusion scintigraphy in various clinical conditions.

Aim

Aim of this review is to describe this evolution of gated SPECT functional assessment from a supporting rank with respect to perfusion, to a main actor position in the field of cardiac imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. DePuey EG, Rozanski A. Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 1995;36:952–5.

    PubMed  CAS  Google Scholar 

  2. Smanio PE, Watson DD, Segalla DL, Vinson EL, Smith WH, Beller GA. Value of gating of technetium-99m sestamibi single-photon emission computed tomographic imaging. J Am Coll Cardiol 1997;30:1687–92.

    PubMed  CAS  Google Scholar 

  3. Fleischmann S, Koepfli P, Namdar M, Wyss CA, Jenni R, Kaufmann PA. Gated 99mTc-tetrofosmin SPECT for discriminating infarct from artifact in fixed myocardial perfusion defects. J Nucl Med 2004;45:754–75.

    PubMed  Google Scholar 

  4. Chua T, Kiat H, Germano G, Maurer G, van Train K, Friedman J, et al. Gated technetium-99m sestamibi for simultaneous assessment of stress myocardial perfusion, postexercise regional ventricular function and myocardial viability. Correlation with echocardiography and rest thallium-201 scintigraphy. J Am Coll Cardiol 1994;23:1107–14.

    Article  PubMed  CAS  Google Scholar 

  5. Nichols K, DePuey EG, Krasnow N, Lefkowitz D, Rozanski A. Reliability of enhanced gated SPECT in assessing wall motion of severely hypoperfused myocardium: echocardiographic validation. J Nucl Cardiol 1998;5:387–94.

    PubMed  CAS  Google Scholar 

  6. Everaert H, Vanhove C, Franken PR. Effects of low-dose dobutamine on left ventricular function in normal subjects as assessed by gated single-photon emission tomography myocardial perfusion studies. Eur J Nucl Med 1999;26:1298–303.

    PubMed  CAS  Google Scholar 

  7. Johnson LL, Verdesca SA, Aude WY, Xavier RC, Nott LT, Campanella MW, et al. Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms. J Am Coll Cardiol 1997;30:1641–8.

    PubMed  CAS  Google Scholar 

  8. DePuey EG, Nichols K, Dobrinsky C. Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT. J Nucl Med 1993;34:1871–6.

    PubMed  CAS  Google Scholar 

  9. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138–47.

    PubMed  CAS  Google Scholar 

  10. Williams KA, Taillon LA. Left ventricular function in patients with coronary artery disease assessed by gated tomographic myocardial perfusion images. Comparison with assessment by contrast ventriculography and first-pass radionuclide angiography. J Am Coll Cardiol 1996;27:173–81.

    PubMed  CAS  Google Scholar 

  11. Gunning MG, Anagnostopoulos C, Davies G, Format SM, Ell PJ, Underwood SR. Gated technetium-99m-tetrofosmin SPECT and cine MRI to assess left ventricular contraction. J Nucl Med 1997;38:438–42.

    PubMed  CAS  Google Scholar 

  12. Everaert H, Bossuyt A, Franken PR. Left ventricular ejection fraction and volumes from gated single photon emission tomographic myocardial perfusion images: comparison between two algorithms working in three-dimensional space. J Nucl Cardiol 1997;4:472–6.

    PubMed  CAS  Google Scholar 

  13. Mochizuki T, Murase K, Tanaka H, Kondoh T, Hamamoto K, Tauxe WN. Assessment of left ventricular volume using ECG-gated SPECT with technetium-99m-MIBI and technetium-99m-tetrofosmin. J Nucl Med 1997;38:53–7.

    PubMed  CAS  Google Scholar 

  14. Stollfuss JC, Haas F, Matsunari I, Neverve J, Nekolla S, Schneider-Eicke J, et al. Regional myocardial wall thickening and global ejection fraction in patients with low angiographic left ventricular ejection fraction assessed by visual and quantitative resting ECG-gated 99m tetrofosmin single-photon emission tomography and magnetic resonance imaging. Eur J Nucl Med 1998;25:522–30.

    PubMed  CAS  Google Scholar 

  15. Nichols K, Amis J, dePuey G, Mieres J, Malhotra S, Rozanski A. Relationship of gated SPECT ventricular function parameters to angiographic measurements. J Nucl Cardiol 1998;5:295–303.

    PubMed  CAS  Google Scholar 

  16. Manrique A, Faraggi M, Vera P, Vilain D, Lebtahi R, Cribier A, et al. 201-Tl and 99m-Tc-MIBI gated SPECT in patients with large perfusion defects and left ventricular dysfunction: comparison with equilibrium radionuclide angiography. J Nucl Med 1999;40:805–9.

    PubMed  CAS  Google Scholar 

  17. Vaduganathan P, He ZX, Vick W, Mahmarian JJ, Verani MS. Evaluation of left ventricular wall motion, volumes and ejection fraction by gated myocardial tomography with technetium 99m-labeled tetrofosmin: a comparison with cine magnetic resonance imaging. J Nucl Cardiol 1999;6:3–10.

    PubMed  CAS  Google Scholar 

  18. Yoshika J, Hasegawa S, Yamaguchi H, Tokita N, Paul AK, Xiuli M, et al. Left ventricular volumes and ejection fraction calculated from quantitative electrocardiogram-gated 99mTc-tetrofosmin myocardial SPECT. J Nucl Med 1999;40:1693–8.

    Google Scholar 

  19. Cwajg E, Cwajg J, He ZX, Hwang WS, Keng F, Nagueh SF, et al. Gated myocardial perfusion tomography for the assessment of left ventricular function and volumes: comparison with echocardiography. J Nucl Med 1999;40:1857–65.

    PubMed  CAS  Google Scholar 

  20. Tadamura E, Kudoh T, Motooka M, Inubushi M, Shirakawa S, Hattori N, et al. Assessment of regional and global left ventricular function by reinjection Tl-201 and rest Tc-99m sestamibi ECG-gated SPECT. Comparison with three-dimensional magnetic resonance imaging. J Am Coll Cardiol 1999;33:991–7.

    PubMed  CAS  Google Scholar 

  21. Tadamura E, Kudoh T, Motooka M, Inubushi M, Okada T, Kubo S, et al. Use of technetium-99m sestamibi ECG-gated single-photon emission tomography for the evaluation of left ventricular function following coronary artery bypass graft: comparison with three-dimensional magnetic resonance imaging. Eur J Nucl Med 1999;26:705–12.

    PubMed  CAS  Google Scholar 

  22. Stollfuss JC, Haas F, Matsunari I, Neverve J, Nekolla S, Ziegler S, et al. 99mTc-tetrofosmin SPECT for prediction of functional recovery defined by MRI in patients with severe left ventricular dysfunction: additional value of gated SPECT. J Nucl Med 1999;40:1824–31.

    PubMed  CAS  Google Scholar 

  23. Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, et al. Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 1999;40:650–9.

    PubMed  CAS  Google Scholar 

  24. Vera P, Koning R, Criber A, Manrique A. Comparison of two three-dimensional gated SPECT methods with thallium in patients with large myocardial infarction. J Nucl Cardiol 2000;7:312–9.

    PubMed  CAS  Google Scholar 

  25. Nichols K, Lefkowitz D, Faber T, Folks R, Cooke D, Garcia EV, et al. Echocardiographic validation of gated SPECT ventricular function measurements. J Nucl Med 2000;41:1308–14.

    PubMed  CAS  Google Scholar 

  26. Chua T, Yin LC, Thiang TH, Choo TB, Ping DZ, Leng LY. Accuracy of the automated assessment of left ventricular function with gated perfusion SPECT in the presence of perfusion defects and left ventricular dysfunction: correlation with equilibrium radionuclide ventriculography and echocardiography. J Nucl Cardiol 2000;7:301–11.

    PubMed  CAS  Google Scholar 

  27. Bax JJ, Lamb H, Dibbets P, Pelikan H, Boersma E, Viergever EP, et al. Comparison of gated single-photon emission computed tomography with magnetic resonance imaging for evaluation of left ventricular function in ischemic cardiomyopathy. Am J Cardiol 2000;86:1299–305.

    PubMed  CAS  Google Scholar 

  28. Bavelaar-Croon CD, Kayser HW, van der Wall EE, de Roos A, Dibbets-Schneider P, Pauwels EK, et al. Left ventricular function: correlation of quantitative gated SPECT and MR imaging over a wide range of values. Radiology 2000;217:572–5.

    PubMed  CAS  Google Scholar 

  29. Atsma DE, Bavelaar-Croon CD, Germano G, Dibbets-Schneider P, van Eck-Smit BL, Pauwels EK, et al. Good correlation between gated single photon emission computed myocardial tomography and contrast ventriculography in the assessment of global and regional left ventricular function. Int J Card Imaging 2000;16:447–53.

    PubMed  CAS  Google Scholar 

  30. Faber TL, Vansant JP, Pettigrew RI, Galt JR, Blais M, Chatzimavroudis G, et al. Evaluation of left ventricular endocardial volumes and ejection fractions computed from gated perfusion SPECT with magnetic resonance imaging: comparison of two methods. J Nucl Cardiol 2001;8:645–51.

    PubMed  CAS  Google Scholar 

  31. Thorley PJ, Plein S, Bloomer TN, Ridgway JP, Sivananthan UM. Comparison of 99mTc tetrofosmin gated SPECT measurements of left ventricular volumes and ejection fraction with MRI over a wide range of values. Nucl Med Commun 2003;24:763–9.

    PubMed  CAS  Google Scholar 

  32. Lipke CS, Kuhl HP, Nowak B, Kaiser HJ, Reinartz P, Koch KC, et al. Validation of 4D-MSPECT and QGS for quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPET: comparison with cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging 2004;31:482–90.

    PubMed  Google Scholar 

  33. Persson E, Carlsson M, Palmer J, Pahlm O, Arheden H. Evaluation of left ventricular volumes and ejection fraction by automated gated myocardial SPECT versus cardiovascular magnetic resonance. Clin Physiol Funct Imaging 2005;25:135–41.

    PubMed  Google Scholar 

  34. Schaefer WM, Lipke CS, Standke D, Kuhl HP, Nowak B, Kaiser HJ, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation and comparison of the Emory Cardiac Tool Box with QGS and 4D-MSPECT. J Nucl Med 2005;46:1256–63.

    PubMed  Google Scholar 

  35. Marie PY, Djaballah W, Franken PR, Vanhove C, Muller MA, Boutley H, et al. OSEM reconstruction, associated with temporal Fourier and depth-dependant resolution recovery filtering, enhances results from sestamibi and 201Tl 16-interval gated SPECT. J Nucl Med 2005;46:1789–95.

    PubMed  Google Scholar 

  36. Guterberlet M, Mehl S, Froelich M, Hausmann H, Plotkin M, Ruf J, et al. Determination of ventricular volumes in coronary artery disease. Comparison of two gated SPECT analysis tools with MRI. Nuklearmedizin 2006;45:63–73.

    Google Scholar 

  37. Cullom SJ, Case JA, Bateman TM. Electrocardiographically gated myocardial perfusion SPECT: technical principles and quality control considerations. J Nucl Cardiol 1998;5:418–25.

    PubMed  CAS  Google Scholar 

  38. Paul AK, Nabi HA. Gated myocardial perfusion SPECT: basic principles, technical aspects, and clinical applications. J Nucl Med Technol 2004;32:179–87.

    PubMed  Google Scholar 

  39. Sciagrà R, Leoncini M. Gated single-photon emission computed tomography. The present-day “one-stop-shop” for cardiac imaging. Q J Nucl Med Mol Imaging 2005;49:19–29.

    PubMed  Google Scholar 

  40. Abidov A, Germano G, Hachamovitch R, Berman DS. Gated SPECT in assessment of regional and global left ventricular function: major tool of modern nuclear imaging. J Nucl Cardiol 2006;13:261–79.

    PubMed  Google Scholar 

  41. Nichols K, Dorbala S, DePuey EG, Yao SS, Sharma A, Rozanski A. Influence of arrhythmias on gated SPECT myocardial perfusion and function quantification. J Nucl Med 1999;40:924–34.

    PubMed  CAS  Google Scholar 

  42. Nichols K, Yao SS, Kamran M, Faber TL, Cooke CD, DePuey EG. Clinical impact of arrhythmias on gated SPECT cardiac myocardial perfusion and function assessment. J Nucl Cardiol 2001;8:19–30.

    PubMed  CAS  Google Scholar 

  43. ASNC Executive Council. American Society of Nuclear Cardiology position statement on electrocardiographic gating of myocardial perfusion SPECT scintigrams. J Nucl Cardiol 1999;6:470–1.

    Google Scholar 

  44. Gait JR, Garcia EV, Robbins WL. Effects of myocardial wall thickness of SPECT quantification. IEEE Trans Med Imaging 1990;9:144–50.

    Google Scholar 

  45. Nichols K, DePuey EG, Friedman MI, Rozanski A. Do patient data ever exceed the partial volume limit in gated SPECT studies? J Nucl Cardiol 1998;5:484–90.

    PubMed  CAS  Google Scholar 

  46. Nakajima K, Taki J, Higuchi T, Kawano M, Taniguchi M, Maruhashi K, et al. Gated SPET quantification of small hearts: mathematical simulation and clinical application. Eur J Nucl Med 2000;27:1372–9.

    PubMed  CAS  Google Scholar 

  47. Hambye AS, Vervaet A, Dobbeleir A. Variability of left ventricular ejection fraction and volumes with quantitative gated SPECT: influence of algorithm, pixel size and reconstruction parameters in small and normal-sized hearts. Eur J Nucl Med Mol Imaging 2004;31:1606–13.

    PubMed  Google Scholar 

  48. Khalil MM, Elgazzar A, Khalil W, Omar A, Ziada G. Assessment of left ventricular ejection fraction by four different methods using 99mTc tetrofosmin gated SPECT in patients with small hearts: correlation with gated blood pool. Nucl Med Commun 2005;26:885–93.

    PubMed  Google Scholar 

  49. Sharir T, Kang X, Germano G, Bax JJ, Shaw LJ, Gransar H, et al. Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion SPECT in women and men: gender-related differences in normal limits and outcomes. J Nucl Cardiol 2006;13:495–506.

    PubMed  Google Scholar 

  50. Leoncini M, Marcucci G, Sciagrà R, Frascarelli F, Traini AM, Mondanelli D, et al. Nitrate-enhanced gated Tc-99m sestamibi SPECT for evaluating regional wall motion at baseline and during low dose dobutamine infusion in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison with two-dimensional echocardiography. J Nucl Cardiol 2000;7:426–31.

    PubMed  CAS  Google Scholar 

  51. Abidov A, Slomka PJ, Nishina H, Hayes SW, Kang X, Yoda S, et al. Left ventricular shape index assessed by gated stress myocardial perfusion SPECT: initial description of a new variable. J Nucl Cardiol 2006;13:652–9.

    PubMed  Google Scholar 

  52. Links JM, DePuey EG, Taillefer R, Becker LC. Attenuation correction and gating synergistically improve the diagnostic accuracy of myocardial perfusion SPECT. J Nucl Cardiol 2002;9:183–7.

    PubMed  Google Scholar 

  53. Thompson RC, Heller GV, Johnson LL, Case JA, Cullom J, Garcia EV, et al. Value of attenuation correction on ECG-gated SPECT myocardial perfusion imaging related to body mass index. J Nucl Cardiol 2005;12:195–202.

    PubMed  Google Scholar 

  54. Bateman TM, Cullom SJ. Attenuation correction single-photon emission computed tomography myocardial perfusion imaging. Semin Nucl Med 2005;35:37–51.

    PubMed  Google Scholar 

  55. Nakajima K, Higuchi T, Taki J, Kawano M, Tonami N. Accuracy of ventricular volume and ejection fraction measured by gated myocardial SPECT: comparison of 4 software programs. J Nucl Med 2001;42:1571–8.

    PubMed  CAS  Google Scholar 

  56. Kritzman JN, Ficaro EP, Corbett JR. Reproducibility of 3-D MSPECT for quantitative gated SPECT sestamibi perfusion analysis [abstract]. J Nucl Med 2000;41(suppl):166P.

    Google Scholar 

  57. Goris ML, Thompson C, Malone LJ, Franken PR. Modelling the integration of myocardial regional perfusion and function. Nucl Med Commun 1994;15:9–20.

    PubMed  CAS  Google Scholar 

  58. Liu YH, Sinusas AJ, Khalmov D, Gebuza BJ, Wackers FJT. New hybrid count-and geometry-based method for quantification of left ventricular volumes and ejection fraction from ECG-gated SPECT: methodology and validation. J Nucl Cardiol 2005;12:55–65.

    PubMed  CAS  Google Scholar 

  59. Smith WH, Kastner RJ, Calnon DA, Segalla D, Beller GA, Watson DD. Quantitative gated single photon emission computed tomography imaging: a count-based method for display and measurement of regional and global ventricular systolic function. J Nucl Cardiol 1997;4:451–63.

    PubMed  CAS  Google Scholar 

  60. Nakata T, Katagiri Y, Odawara Y, Eguchi M, Koruda M, Tsuchihashi K, et al. Two- and three-dimensional assessments of myocardial perfusion and function by using technetium-99m sestamibi gated SPECT with a combination of count-and image-based techniques. J Nucl Cardiol 2000;7:623–32.

    PubMed  CAS  Google Scholar 

  61. Nichols K, Santana CA, Folks R, Krawczynska E, Cooke CD, Faber TL, et al. Comparison between ECTb and QGS for assessment of left ventricular function from gated myocardial perfusion SPECT. J Nucl Cardiol 2002;9:285–93.

    PubMed  Google Scholar 

  62. Lum DP, Coel MN. Comparison of automatic quantification software for the measurement of ventricular volume and ejection fraction in gated myocardial perfusion SPECT. Nucl Med Commun 2003;24:259–66.

    PubMed  CAS  Google Scholar 

  63. Khalil MM, Elgazzar A, Khalil W. Evaluation of left ventricular ejection fraction by the quantitative algorithms QGS, ECTb, LMC and LVGTF using gated myocardial perfusion SPECT: investigation of relative accuracy. Nucl Med Commun 2006;27:321–32.

    PubMed  Google Scholar 

  64. Feng B, Sitek A, Gullberg GT. Calculation of left ventricular ejection fraction without edge detection: application to small hearts. J Nucl Med 2002;43:786–94.

    PubMed  Google Scholar 

  65. Verberne HJ, Dijkgraaf MG, Somsen GA, van Eck-Smit BL. Stress-related variations in left ventricular function as assessed with gated myocardial perfusion SPECT. J Nucl Cardiol 2003;10:456–63.

    PubMed  Google Scholar 

  66. De Winter O, De Bondt P, Van De Wiele C, De Backer G, Dierckx RA, De Sutter J. Day-to-day variability of global left ventricular functional and perfusional measurements by quantitative gated SPECT using Tc-99m tetrofosmin in patients with heart failure due to coronary artery disease. J Nucl Cardiol 2004;11:47–52.

    PubMed  Google Scholar 

  67. Vallejo E, Chaya H, Plancarte G, Victoria D, Bialostozky D. Variability of serial same-day left ventricular ejection fraction using quantitative gated SPECT. J Nucl Cardiol 2002;9:377–84.

    PubMed  Google Scholar 

  68. Nakajima K, Nishimura T. Inter-institution preference-based variability of ejection fraction and volumes using quantitative gated SPECT with 99mTc-tetrofosmin: a multicentre study involving 106 hospitals. Eur J Nucl Med Mol Imaging 2006;33:127–33.

    PubMed  Google Scholar 

  69. Rozanski A, Nichols K, Yao SS, Malholtra S, Cohen R, DePuey EG. Development and application of normal limits for left ventricular ejection fraction and volume measurements from 99mTc-sestamibi myocardial perfusion gated SPECT. J Nucl Med 2000;41:1445–50.

    PubMed  CAS  Google Scholar 

  70. Ababneh AA, Sciacca RR, Kim B, Bergmann SR. Normal limits for left ventricular ejection fraction and volumes estimated with gated myocardial perfusion imaging in patients with normal exercise test results: influence of tracer, gender, and acquisition camera. J Nucl Cardiol 2000;7:661–8.

    PubMed  CAS  Google Scholar 

  71. Kumita S, Cho K, Nakajo H, Toba M, Uwamori M, Mizumura S, et al. Assessment of left ventricular diastolic function with electrocardiography-gated myocardial perfusion SPECT: comparison with multigated equilibrium radionuclide angiography. J Nucl Cardiol 2001;8:568–74.

    PubMed  CAS  Google Scholar 

  72. Navare SM, Wackers FJ, Liu YH. Comparison of 16-frame and 8-frame gated SPET imaging for determination of left ventricular volumes and ejection fraction. Eur J Nucl Med Mol Imaging 2003;30:1330–7.

    PubMed  Google Scholar 

  73. Akincioglu C, Berman DS, Nishina H, Kavanagh PB, Slomka PJ, Abidov A, et al. Assessment of diastolic function using 16-frame 99mTc-sestamibi gated myocardial perfusion SPECT: normal values. J Nucl Med 2005;46:1102–8.

    PubMed  Google Scholar 

  74. Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855–97.

    PubMed  CAS  Google Scholar 

  75. Vourvouri EC, Poldermans D, Bax JJ, Sianos G, Sozzi FB, Schinkel AF, et al. Evaluation of left ventricular function and volumes in patients with ischaemic cardiomyopathy: gated single-photon emission computed tomography versus two-dimensional echocardiography. Eur J Nucl Med 2001;28:1610–5.

    PubMed  CAS  Google Scholar 

  76. Sharir T, Bacher-Stier C, Dhar S, Lewin HC, Miranda R, Friedman JD, et al. Identification of severe and extensive coronary artery disease by postexercise regional wall motion abnormalities in Tc-99m sestamibi gated single-photon emission computed tomography. Am J Cardiol 2000;86:1171–5.

    PubMed  CAS  Google Scholar 

  77. Emmett L, Iwanochko RM, Freeman MR, Barolet A, Lee DS, Husain M. Reversible regional wall motion abnormalities on exercise technetium-99m-gated cardiac single photon emission computed tomography predict high-grade angiographic stenoses. J Am Coll Cardiol 2002;39:991–8.

    PubMed  Google Scholar 

  78. Mazzanti M, Germano G, Kiat H, Kavanagh PB, Alexanderson E, Friedman JD, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilatation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol 1996;27:1612–20.

    PubMed  CAS  Google Scholar 

  79. Yamagishi H, Shirai N, Yoshiyama M, Teragaki M, Akioka K, Takeuchi K, et al. Incremental value of left ventricular ejection fraction for detection of multivessel coronary artery disease in exercise 201Tl gated myocardial perfusion imaging. J Nucl Med 2002;43:131–9.

    PubMed  Google Scholar 

  80. Shirai N, Yamagishi H, Yoshiyama M, Teragaki M, Akioka K, Takeuchi K, et al. Incremental value of assessment of regional wall motion for detection of multivessel coronary artery disease in exercise 201Tl gated myocardial perfusion imaging. J Nucl Med 2002;43:443–50.

    PubMed  Google Scholar 

  81. Lima RS, Watson DD, Goode AR, Siadaty MS, Ragosta M, Beller GA, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 2003;42:64–70.

    PubMed  Google Scholar 

  82. Kaul S, Senior R, Firschke C, Wang XQ, Lindner J, Villanueva FS, et al. Incremental value of cardiac imaging in patients presenting to the emergency department with chest pain and without ST-segment elevation: a multicenter study. Am Heart J 2004;148:129–36.

    PubMed  Google Scholar 

  83. Taillefer R, DePuey EG, Udelson JE, Beller GA, Benjamin C, Gagnon A. Comparison between the end-diastolic images and the summed images of gated 99mTc-sestamibi SPECT perfusion study in detection of coronary artery disease in women. J Nucl Cardiol 1999;6:169–76.

    PubMed  CAS  Google Scholar 

  84. Hachamovitch R, Berman DS. The use of nuclear cardiology in clinical decision making. Semin Nucl Med 2005;35:62–72.

    PubMed  Google Scholar 

  85. Sharir T, Germano G, Kavanagh PB, Lai S, Cohen I, Lewin HC, et al. Incremental prognostic value of pots-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission computed tomography. Circulation 1999;100:1035–42.

    PubMed  CAS  Google Scholar 

  86. Sharir T, Germano G, Kang X, Lewin HC, Miranda R, Cohen I, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med 2001;42:831–7.

    PubMed  CAS  Google Scholar 

  87. Kroll D, Farah W, McKendall GR, Reinert SE, Johnson LL. Prognostic value of stress-gated Tc-99m sestamibi SPECT after acute myocardial infarction. Am J Cardiol 2001;87:381–6.

    PubMed  CAS  Google Scholar 

  88. Bestetti A, Triulzi A, Di Leo C, Tagliabue L, Strinchini A, Bax JJ. Enhanced prognostic stratification of CAD patients with low ejection fraction by stress-rest Tc99m tetrofosmin gated-SPECT. Acta Cardiol 2004;59:17–23.

    PubMed  Google Scholar 

  89. Hashimoto J, Suzuki T, Nakahara T, Kosuda S, Kubo A. Preoperative risk stratification using stress myocardial perfusion scintigraphy with electrocardiographic gating. J Nucl Med 2003;44:385–90.

    PubMed  Google Scholar 

  90. Spinelli L, Petretta M, Acampa W, He W, Petretta A, Bonaduce D, et al. Prognostic value of combined assessment of regional left ventricular function and myocardial perfusion by dobutamine and rest gated SPECT in patients with uncomplicated acute myocardial infarction. J Nucl Med 2003;44:1023–9.

    PubMed  Google Scholar 

  91. Travin MI, Heller GV, Johnson LL, Katten D, Ahlberg AW, Isasi CR, et al. The prognostic value of ECG-gated SPECT imaging in patients undergoing stress Tc-99m sestamibi myocardial perfusion imaging. J Nucl Cardiol 2004;11:253–62.

    PubMed  Google Scholar 

  92. Thomas GS, Miyamoto MI, Morello AP 3rd, Majmundar H, Thomas JJ, Sampson CH, et al. Technetium 99m sestamibi myocardial perfusion imaging predicts clinical outcome in the community outpatient setting. The Nuclear Utility in the Community (NUC) study. J Am Coll Cardiol 2004;43:213–23.

    PubMed  Google Scholar 

  93. De Winter O, Velghe A, Van de Veire N, De Bondt P, De Buyzere M, Van De Wiele C, et al. Incremental prognostic value of combined perfusion and function assessment during myocardial gated SPECT in patients aged 75 years or older. J Nucl Cardiol 2005;12:662–70.

    PubMed  Google Scholar 

  94. Bigi R, Bestetti A, Strinchini A, Conte A, Gregori D, Brusoni B, et al. Combined assessment of left ventricular perfusion and function by gated single-photon emission computed tomography for the risk stratification of high-risk hypertensive patients. J Hypertens 2006;24:767–73.

    PubMed  CAS  Google Scholar 

  95. Germano G, Erel J, Lewin H, Kavanagh PB, Berman DS. Automatic quantification of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1997;30:1360–7.

    PubMed  CAS  Google Scholar 

  96. Yang KTA, Chen HD. Evaluation of global and regional left ventricular function using technetium-99m sestamibi ECG-gated single-photon emission tomography. Eur J Nucl Med 1998;25:515–21.

    PubMed  CAS  Google Scholar 

  97. Sugihara H, Tamaki N, Nozawa M, Ohmura T, Inamoto Y, Taniguchi Y, et al. Septal perfusion and wall thickening in patients with left bundle branch block assessed by technetium-99m-sestamibi gated tomography. J Nucl Med 1997;38:545–7.

    PubMed  CAS  Google Scholar 

  98. Kasai T, Depuey EG, Shah AA. Decreased septal wall thickening in patients with left bundle branch block. J Nucl Cardiol 2004;11:32–7.

    PubMed  Google Scholar 

  99. Giubbini R, Rossini P, Bertagna F, Bosio G, Paghera B, Pizzocaro C, et al. Value of gated SPECT in the analysis of regional wall motion of the interventricular septum after coronary artery bypass grafting. Eur J Nucl Med Mol Imaging 2004;31:1371–7.

    PubMed  Google Scholar 

  100. Leoncini M, Marcucci G, Sciagrà R, Frascarelli F, Bellandi F, Gallopin M, et al. Usefulness of distinct activity thresholds according to baseline regional asynergy for predicting functional recovery in patients with chronic coronary artery disease and left ventricular dysfunction. A study with nitrate-enhanced sestamibi gated SPECT. J Nucl Cardiol 2001;8:555–60.

    PubMed  CAS  Google Scholar 

  101. Kurihara H, Nakamura S, Takehana K, Fukui M, Sawanishi T, Maeba H, et al. Scintigraphic prediction of left ventricular functional recovery early after primary coronary angioplasty using single-injection quantitative electrocardiographic gated SPECT. Nucl Med Commun 2005;26:505–11.

    PubMed  Google Scholar 

  102. Marini C, Giorgetti A, Gimelli A, Kusch A, Sereni N, L’abbate A, et al. Extension of myocardial necrosis differently affects MIBG retention in heart failure caused by ischaemic heart disease or by dilated cardiomyopathy. Eur J Nucl Med Mol Imaging 2005;32:682–8.

    PubMed  Google Scholar 

  103. Everaert H, Vanhove C, Franken PR. Low-dose dobutamine gated single-photon emission tomography: comparison with stress echocardiography. Eur J Nucl Med 2000;27:413–8.

    PubMed  CAS  Google Scholar 

  104. Yoshinaga K, Morita K, Yamada S, Komuro K, Katoh C, Ito Y, et al. Low-dose dobutamine electrocardiography-gated myocardial SPECT for identifying viable myocardium: comparison with dobutamine stress echocardiography and PET. J Nucl Med 2001;42:838–44.

    PubMed  CAS  Google Scholar 

  105. Yamagishi H, Akioka K, Hirata K, Sakanoue Y, Toda I, Yoshiyama M, et al. Dobutamine stress electrocardiography-gated Tc 99m tetrofosmin SPECT for detection of viable but dysfunctional myocardium. J Nucl Cardiol 2001;8:58–67.

    PubMed  CAS  Google Scholar 

  106. Leoncini M, Marcucci G, Sciagrà R, Frascarelli F, Simonetti I, Bini L, et al. Prediction of functional recovery in patients with chronic coronary artery disease and left ventricular dysfunction combining the evaluation of myocardial perfusion and contractile reserve using nitrate-enhanced technetium-99m sestamibi gated single-photon emission computed tomography and dobutamine stress. Am J Cardiol 2001;87:1346–50.

    PubMed  CAS  Google Scholar 

  107. Zafrir N, Arditi A, Ben-Gal T, Solodky A, Hassid Y, Sulkes J, et al. Additive value of low-dose dobutamine to technetium-99m sestamibi-gated single-photon emission computed tomography for prediction of wall motion improvement in patients undergoing coronary artery bypass graft. Clin Cardiol 2003;26:530–5

    PubMed  Google Scholar 

  108. Simoes MV, de Almeida-Filho OC, Pintya AO, de Figueiredo AB, Antloga CM, Salis FV, et al. Prediction of left ventricular wall motion recovery after acute myocardial infarction by Tl-201 gated SPECT: incremental value of integrated contractile reserve assessment. J Nucl Cardiol 2002;9:294–303.

    PubMed  Google Scholar 

  109. Heiba SI, Abdel-Dayem HM, Gould R, Bernaski E, Morlote M, El-Zeftawy H, et al. Value of low-dose dobutamine addition to routine dual isotope gated SPECT myocardial imaging in patients with healed myocardial infarction or abnormal wall thickening by echocardiogram. Am J Cardiol 2004;93:300–6.

    PubMed  CAS  Google Scholar 

  110. Kumita S, Cho K, Nakajo H, Toba M, Fukushima Y, Mizumura S, et al. Assessment of contractile response to dobutamine stress by means of ECG-gated myocardial SPECT: comparison with myocardial perfusion and fatty acid metabolism. Ann Nucl Med 2005;19:379–86.

    Article  PubMed  Google Scholar 

  111. Leoncini M, Sciagrà R, Maioli M, Bellandi F, Marcucci G, Sestini S, et al. Usefulness of dobutamine Tc-99m sestamibi-gated single-photon emission computed tomography for prediction of left ventricular ejection fraction outcome after coronary revascularization for ischemic cardiomyopathy. Am J Cardiol 2002;89:817–21.

    PubMed  Google Scholar 

  112. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Suzuki T, et al. Myocardial contractile reserve determined by dobutamine stress Tc-99m tetrofosmin quantitative gated SPECT predicts late spontaneous improvement in cardiac function in patients with recent-onset dilated cardiomyopathy. J Nucl Cardiol 2003;10:607–14.

    PubMed  Google Scholar 

  113. Kasama S, Toyama T, Kumakura H, Takayama Y, Ichikawa S, Tange S, et al. Dobutamine stress 99mTc-tetrofosmin quantitative gated SPECT predicts improvement of cardiac function after carvedilol treatment in patients with dilated cardiomyopathy. J Nucl Med 2004;45:1878–84.

    PubMed  CAS  Google Scholar 

  114. Weytjens C, Cosyns B, Van Camp G, Daniels C, Spincemaille K, Dupont A, et al. Abnormal response to inotropic stimulation in young asymptomatic type I diabetic patients demonstrated by serial gated myocardial perfusion SPECT imaging. Eur J Nucl Med Mol Imaging 2005;32:1317–23.

    PubMed  CAS  Google Scholar 

  115. Zellweger MJ, Tabacek G, Zutter AW, Weinbacher M, Cron TA, Muller-Brand J, et al. Evidence for left ventricular remodeling after percutaneous coronary intervention: effect of percutaneous coronary intervention on left ventricular ejection fraction and volumes. Int J Cardiol 2004;96:197–201.

    PubMed  Google Scholar 

  116. Ogard CG, Sondergaard SB, Vestergaard H, Jakobsen H, Nielsen SL. Myocardial perfusion defects and the left ventricular ejection fraction disclosed by scintigraphy in patients with primary hyperparathyroidism. World J Surg 2005;29:914–6.

    PubMed  Google Scholar 

  117. Lima RSL, De Lorenzo A, Soares AJ. Relation between postexercise abnormal heart rate recovery and myocardial damage evidenced by gated single-photon emission computed tomography. Am J Cardiol 2006;97:1452–4.

    PubMed  Google Scholar 

  118. Feola M, Biggi A, Francini A, Leonardi G, Ribichini F, Ferrero V, et al. The acute administration of trimetazidine modified myocardial perfusion and left ventricular function in 31 patients with ischaemic ventricular dysfunction. Int J Cardiovasc Imaging 2004;20:315–20.

    PubMed  Google Scholar 

  119. Valgimigli M, Rigolin GM, Cittanti C, Malagutti P, Curello S, Percoco G, et al. Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J 2005;26:1838–45.

    PubMed  CAS  Google Scholar 

  120. Kuethe F, Figulla HR, Herzau M, Voth M, Fritzenwanger M, Opfermann T, et al. Treatment with granulocyte colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. Am Heart J 2005;150:115.

    PubMed  CAS  Google Scholar 

  121. Beeres SL, Bax JJ, Dibbets P, Stokkel MP, Zeppenfeld K, Fibbe WE, et al. Effect of intramyocardial injection of autologous bone marrow-derived mononuclear cells on perfusion, function, and viability in patients with drug-refractory chronic ischemia. J Nucl Med 2006;47:574–80.

    PubMed  Google Scholar 

  122. Beeres SL, Bax JJ, Dibbets-Schneider P, Stokkel MP, Fibbe WE, van der Waal EE, et al. Sustained effect of autologous bone marrow mononuclear cell injection in patients with refractory angina pectoris and chronic myocardial ischemia: twelve-month follow-up results. Am Heart J 2006;152:684.e11–16.

    Google Scholar 

  123. Fukuchi K, Yasumura Y, Kiso K, Hayashida K, Miyatake K, Ishida Y. Gated myocardial SPECT to predict response to beta-blocker therapy in patients with idiopathic dilated cardiomyopathy. J Nucl Med 2004;45:527–31.

    PubMed  Google Scholar 

  124. Sciagrà R, Giaccardi M, Porciani MC, Colella A, Michelucci A, Pieragnoli P, et al. Myocardial perfusion imaging using gated SPECT in heart failure patients undergoing cardiac resynchronization therapy. J Nucl Med 2004;45:164–8.

    PubMed  Google Scholar 

  125. Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687–95.

    PubMed  Google Scholar 

  126. Tsurugaya H, Tada H, Toyama T, Naito S, Adachi H, Seki RT, et al. Usefulness of quantitative gated single-photon emission computed tomography to evaluate ventricular synchrony in patients receiving biventricular pacing. Am J Cardiol 2004;94:127–30.

    PubMed  Google Scholar 

  127. Schafers M, Stypmann J, Wilhelm MJ, Stegger L, Kies P, Hermann S, et al. Functional changes after partial left ventriculectomy and mitral valve repair assessed by gated perfusion SPECT. J Nucl Med 2004;45:1605–10.

    PubMed  Google Scholar 

  128. Fujii H, Ohashi H, Tsutsumi Y, Kawai T, Iino K, Onaka M. Comparison of volume study by left ventriculography and gated SPECT in endoventricular circular patch plasty. J Card Surg 2005;20:322–5.

    PubMed  Google Scholar 

  129. Fujii H, Ohashi H, Tsutsumi Y, Kawai T, Iino K, Onaka M. Radionuclide study of mid-term left ventricular function after endoventricular circular patch plasty. Eur J Cardiothorac Surg 2004;26:125–8.

    PubMed  Google Scholar 

  130. Htay T, Mehta D, Heo J, Iskandrian AE. Left ventricular function in patients with type 2 diabetes mellitus. Am J Cardiol 2005;95:798–801.

    PubMed  Google Scholar 

  131. Van der Wall EE, Bax JJ. Different imaging approaches in the assessment of left ventricular dysfunction: all things equal? Eur Heart J 2000;21:1295–7.

    PubMed  Google Scholar 

  132. Alfakih K, Reid S, Jones T, Sivananthan M. Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol 2004;14:1813–22.

    PubMed  Google Scholar 

  133. Lim TK, Senior R. Noninvasive modalities for the assessment of left ventricular function: all are equal but some are more equal than others. J Nucl Cardiol 2006;13:445–9.

    PubMed  Google Scholar 

  134. van Royen N, Jaffe CC, Krumholz HM, Johnson KM, Lynch PJ, Natale D, et al. Comparison and reproducibility of visual echocardiographic and quantitative radionuclide left ventricular ejection fractions. Am J Cardiol 1996;77:843–50.

    PubMed  Google Scholar 

  135. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 2000;21:1387–96.

    PubMed  CAS  Google Scholar 

  136. Senior R, Sridhara BS, Basu S, Henley M, Handler CE, Raftery EB, et al. Comparison of radionuclide ventriculography and 2D echocardiography for the measurement of left ventricular ejection fraction following acute myocardial infarction. Eur Heart J 1994;15:1235–9.

    PubMed  CAS  Google Scholar 

  137. Jacobs LD, Salgo IS, Goonewardena S, Weinert L, Coon P, Bardo D, et al. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiography. Eur Heart J 2006;27:460–8.

    PubMed  Google Scholar 

  138. Mahnken AH, Muhlenbruch G, Koos R, Stanzel S, Busch PS, Niethammer M, et al. Automated vs. manual assessment of left ventricular function in cardiac multidetector row computed tomography: comparison with magnetic resonance imaging. Eur J Radiol 2006;16:1416–23.

    Google Scholar 

  139. Henneman MM, Schuiff JD, Jukerna JW, Holman ER, Lamb HJ, de Roos A, et al. Assessment of global and regional left ventricular function and volumes with 64-slice MSCT: a comparison with 2D echocardiography. J Nucl Cardiol 2006;13:480–7.

    PubMed  Google Scholar 

  140. Thompson RC, Cullom SJ. Issues regarding radiation dosage of cardiac nuclear and radiography procedures. J Nucl Cardiol 2006;13:19–23.

    PubMed  Google Scholar 

  141. Schepis T, Gaemperli O, Koepfli P, Valenta I, Strobel K, Brunner A, et al. Comparison of 64-slice CT with gated SPECT for evaluation of left ventricular function. J Nucl Med 2006;47:1288–94.

    PubMed  Google Scholar 

  142. Cuocolo A, Acampa W, Imbriaco M, De Luca N, Iovino GL, Salvatore M. The many ways to myocardial perfusion imaging. Q J Nucl Med Mol Imaging 2005;49:4–18.

    PubMed  CAS  Google Scholar 

  143. Isbell DC, Kramer CM. Cardiovascular magnetic resonance: structure, function, perfusion, and viability. J Nucl Cardiol 2005;12:324–36.

    PubMed  Google Scholar 

  144. Clark AN, Beller GA. The present role of nuclear cardiology in clinical practice. Q J Nucl Med Mol Imaging 2005;49:43–58.

    PubMed  CAS  Google Scholar 

  145. Poornima IG, Miller TD, Christian TF, Hodge DO, Bailey KR, Gibbons RJ. Utility of myocardial perfusion imaging in patients with low-risk treadmill scores. J Am Coll Cardiol 2004;43:194–9.

    PubMed  Google Scholar 

  146. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005;46:552–7.

    PubMed  Google Scholar 

  147. Hacker M, Jakobs T, Matthiesen F, Vollmar C, Nikolaou K, Becker C, et al. Comparison of spiral multidetector CT angiography and myocardial perfusion imaging in the noninvasive detection of functionally relevant coronary artery lesions: first clinical experiences. J Nucl Med 2005;46:1294–300.

    PubMed  Google Scholar 

  148. Berman DS, Hachamovitch R, Shaw LJ, Friedman JD, Hayes SW, Thomson LE, et al. Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: Noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease. J Nucl Med 2006;47:1107–18.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Sciagrà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sciagrà, R. The expanding role of left ventricular functional assessment using gated myocardial perfusion SPECT: the supporting actor is stealing the scene. Eur J Nucl Med Mol Imaging 34, 1107–1122 (2007). https://doi.org/10.1007/s00259-007-0405-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0405-6

Keywords

Navigation