Skip to main content

Advertisement

Log in

Assessment of coronary flow reserve by sestamibi imaging in patients with typical chest pain and normal coronary arteries

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Erratum to this article was published on 22 July 2008

Abstract

Purpose

We assessed coronary flow reserve (CFR) by sestamibi imaging in patients with typical chest pain, positive exercise stress test and normal coronary vessels.

Methods

Thirty-five patients with typical chest pain and normal angiogram and 12 control subjects with atypical chest pain underwent dipyridamole/rest 99mTc-sestamibi imaging. Myocardial blood flow (MBF) was estimated by measuring first transit counts in the pulmonary artery and myocardial counts from SPECT images. Estimated CFR was expressed as the ratio of stress to rest MBF. Rest MBF and CFR were corrected for rate–pressure product (RPP) and expressed as normalised MBF (MBFn) and normalised CFR (CFRn). Coronary vascular resistances (CVR) were calculated as the ratio between mean arterial pressure and estimated MBF.

Results

At rest, estimated MBF and MBFn were lower in controls than in patients (0.98 ± 0.4 vs 1.30 ± 0.3 counts/pixel/s and 1.14 ± 0.5 vs 1.64 ± 0.6 counts/pixel/s, respectively, both p < 0.02). Stress MBF was not different between controls and patients (2.34 ± 0.8 vs 2.01 ± 0.7 counts/pixel/s, p=NS). Estimated CFR was 2.40 ± 0.3 in controls and 1.54 ± 0.3 in patients (p < 0.0001). After correction for the RPP, CFRn was still higher in controls than in patients (2.1 ± 0.5 vs 1.29 ± 0.5, p < 0.0001). At baseline, CVR values were lower (p < 0.01) in patients than in controls. Dipyridamole-induced changes in CVR were greater (p < 0.0001) in controls (−63%) than in patients (−35%). In the overall study population, a significant correlation between dipyridamole-induced changes in CVR and CFR was observed (r = −0.88, p < 0.0001).

Conclusion

SPECT might represent a useful non-invasive method for assessing coronary vascular function in patients with angina and a normal coronary angiogram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cannon RO, Watson RM, Rosing DR, Epstein SE. Angina caused by reduced vasodilator reserve of the small coronary arteries. J Am Coll Cardiol 1983;1:1359–73.

    PubMed  Google Scholar 

  2. Phibbs B, Fleming T, Ewy GA, Butman S, Ambrose J, Gorlin R, et al. Frequency of normal coronary arteriograms in three academic medical centers and one community hospital. Am J Cardiol 1988;62:472–4.

    Article  PubMed  CAS  Google Scholar 

  3. Crea F, Lanza GA. Angina pectoris and normal coronary arteries: cardiac syndrome X. Heart 2004;90:457–63.

    Article  Google Scholar 

  4. Yang EH, Lerman A. Angina pectoris with a normal coronary angiogram. Herz 2005;30:17–25.

    Article  PubMed  CAS  Google Scholar 

  5. Murakami H, Urabe K, Nishimura M. Inappropriate microvascular constriction produced transient ST-segment elevation in patients with syndrome X. J Am Coll Cardiol 1998;32:1287–94.

    Article  PubMed  CAS  Google Scholar 

  6. Beltrame JF, Horowitz JD. ST elevation secondary to microvascular dysfunction. J Am Coll Cardiol 1999;34:312–3.

    PubMed  CAS  Google Scholar 

  7. Lanza GA, Manzoli A, Pasceri V, Colonna G, Cianflone D, Crea F, et al. Ischemic-like ST-segment changes during Holter monitoring in patients with angina pectoris and normal coronary arteries but negative exercise testing. Am J Cardiol 1997;79:1–6.

    Article  PubMed  CAS  Google Scholar 

  8. Cannon RO, Epstein SE. “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am J Cardiol 1988;61:1338–43.

    Article  PubMed  Google Scholar 

  9. Cannon RO, Camici PG, Epstein SE. Pathophysiological dilemma of syndrome X. Circulation 1992;85:883–92.

    PubMed  Google Scholar 

  10. Chauhan A, Mullins PA, Taylor G, Petch MC, Schofield PM. Both endothelium-dependent and endothelium-independent function is impaired in patients with angina pectoris and normal coronary angiograms. Eur Heart J 1997;18:60–8.

    PubMed  CAS  Google Scholar 

  11. Galassi AR, Crea F, Araujo LI, Lammertsma AA, Pupita G, Yamamoto Y, et al. Comparison of regional myocardial blood flow in syndrome X and one-vessel coronary artery disease. Am J Cardiol 1993;72:134–9.

    Article  PubMed  CAS  Google Scholar 

  12. Reddy KG, Nair RN, Sheehan HM, Hodgson JM. Evidence that selective endothelial dysfunction may occur in the absence of angiographic or ultrasound atherosclerosis in patients with risk factors for atherosclerosis. J Am Coll Cardiol 1994;23:833–43.

    PubMed  CAS  Google Scholar 

  13. Geltman EM, Henes CG, Senneff MJ, Sobel BE, Bergmann SR. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol 1990;16:586–95.

    Article  PubMed  CAS  Google Scholar 

  14. Czernin J, Muller P, Chan S, Brunken RC, Porenta G, Krivokapich J, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993;88:62–9.

    PubMed  CAS  Google Scholar 

  15. Meeder JG, Blanksma PK, van der Wall EE, Willemsen AT, Pruim J, Anthonio RL, et al. Coronary vasomotion in patients with syndrome X: evaluation with positron emission tomography and parametric myocardial perfusion imaging. Eur J Nucl Med 1997;24:530–7.

    PubMed  CAS  Google Scholar 

  16. Quyyumi AA, Cannon RO, Panza JA, Diodati JG, Epstein SE. Endothelial dysfunction in patients with chest pain and normal coronary arteries. Circulation 1992;86:1864–71.

    PubMed  CAS  Google Scholar 

  17. Bortone AS, Hess OM, Eberli FR, Nonogi H, Marolf AP, Grimm J, et al. Abnormal coronary vasomotion during exercise in patients with normal coronary arteries and reduced coronary flow reserve. Circulation 1989;79:516–27.

    PubMed  CAS  Google Scholar 

  18. Egashira K, Inou T, Hirooka Y, Yamada A, Urabe Y, Takeshita A. Evidence of impaired endothelium-dependent coronary vasodilatation in patients with angina pectoris and normal coronary angiograms. N Engl J Med 1993;328:1659–64.

    Article  PubMed  CAS  Google Scholar 

  19. Graf S, Khorsand A, Gwechenberger M, Schutz M, Kletter K, Sochor H, et al. Myocardial perfusion in patients with typical chest pain and normal angiogram. Eur J Clin Invest 2006;36:326–32.

    Article  PubMed  CAS  Google Scholar 

  20. Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, et al. Quantification of regional myocardial blood flow in vivo with H2-15O. Circulation 1984;70:724–33.

    PubMed  CAS  Google Scholar 

  21. Araujo LI, Lammertsma AA, Rhodes CG, McFalls EO, Iida H, Rechavia E, et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 1991;83:875–85.

    PubMed  CAS  Google Scholar 

  22. Sugihara H, Yonekura Y, Kataoka K, Fukai D, Kitamura N, Taniguchi Y. Estimation of coronary flow reserve with the use of dynamic planar and SPECT images of Tc-99m tetrofosmin. J Nucl Cardiol 2001;8:575–9.

    Article  PubMed  CAS  Google Scholar 

  23. Storto G, Cirillo P, Vicario MLE, Pellegrino T, Sorrentino AR, Petretta M, et al. Estimation of coronary flow reserve by Tc-99m sestamibi imaging in patients with coronary artery disease: comparison with the results of intracoronary Doppler technique. J Nucl Cardiol 2004;11:682–8.

    Article  PubMed  Google Scholar 

  24. Bugiardini R. Normal coronary arteries: clinical implications and further classification. Herz 2005;30:3–7.

    Article  PubMed  Google Scholar 

  25. Maseri A, Crea F, Kaski JC, Crake T. Mechanisms of angina pectoris in syndrome X. J Am Coll Cardiol 1991;17:499–506.

    PubMed  CAS  Google Scholar 

  26. Buchthal SD, den Hollander JA, Merz CN, Rogers WJ, Pepine CJ, Reichek N, et al. Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. N Engl J Med 2000;342:829–35.

    Article  PubMed  CAS  Google Scholar 

  27. de Silva R, Camici PG. Role of positron emission tomography in the investigation of human coronary circulatory function. Cardiovasc Res 1994;28:1595–612.

    Article  PubMed  Google Scholar 

  28. Adamopoulos S, Rosano GM, Ponikowski P, Cerquetani E, Piepoli M, Panagiota F, et al. Impaired baroreflex sensitivity and sympathovagal balance in syndrome X. Am J Cardiol 1998;82:862–8.

    Article  PubMed  CAS  Google Scholar 

  29. Camici PG, Marraccini P, Gistri R, Salvadori PA, Sorace O, L’Abbate A. Adrenergically mediated coronary vasoconstriction in patients with syndrome X. Cardiovasc Drugs Ther 1994;8:221–6.

    Article  PubMed  CAS  Google Scholar 

  30. Lanza GA, Giordano A, Pristipino C, Calcagni ML, Meduri G, Trani C, et al. Abnormal cardiac adrenergic nerve function in patients with syndrome X detected by [123I]metaiodobenzylguanidine myocardial scintigraphy. Circulation 1997;96:821–6.

    PubMed  CAS  Google Scholar 

  31. Botker HE, Sonne HS, Bagger JP, Nielsen TT. Impact of impaired coronary flow reserve and insulin resistance on myocardial energy metabolism in patients with syndrome X. Am J Cardiol 1997;79:1615–22.

    Article  PubMed  CAS  Google Scholar 

  32. Taki J, Fujino S, Nakajima K, Matsunari I, Okazaki H, Saga T, et al. Tc-99m sestamibi retention characteristics during pharmacological hyperemia in human myocardium: comparison with coronary flow reserve measured by Doppler flowire. J Nucl Med 2001;42:1457–63.

    PubMed  CAS  Google Scholar 

  33. Ito Y, Katoh C, Noriyasu K, Kuge Y, Furuyama H, Morita K, et al. Estimation of myocardial blood flow and myocardial flow reserve by 99mTc-sestamibi imaging: comparison with the results of O-15 H2O PET. Eur J Nucl Med Mol Imaging 2003;30:281–7.

    Article  PubMed  CAS  Google Scholar 

  34. Smits P, Williams SB, Lipson DE, Banitt P, Rongen GA, Creager MA. Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Circulation 1995;92:2135–41.

    PubMed  CAS  Google Scholar 

  35. Buus NH, Bottcher M, Hermansen F, Sander M, Nielsen TT, Mulvany MJ. Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia. Circulation 2001;104:2305–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cuocolo.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00259-008-0877-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storto, G., Sorrentino, A.R., Pellegrino, T. et al. Assessment of coronary flow reserve by sestamibi imaging in patients with typical chest pain and normal coronary arteries. Eur J Nucl Med Mol Imaging 34, 1156–1161 (2007). https://doi.org/10.1007/s00259-006-0333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0333-x

Keywords

Navigation