Skip to main content
Log in

Test–retest stability of cerebral A1 adenosine receptor quantification using [18F]CPFPX and PET

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The goal of the present study was to evaluate the reproducibility of cerebral A1 adenosine receptor (A1AR) quantification using [18F]CPFPX and PET in a test–retest design.

Methods

Eleven healthy volunteers were studied twice. Eight brain regions ranging from high to low receptor binding were examined. [18F]CPFPX was injected as a bolus with subsequent infusion over 120 min. Various outcome parameters were compared based on either metabolite-corrected venous blood sampling [e.g. apparent equilibrium total distribution volume (DVt′)] or a reference region [ratio of specific to non-specific distribution volume (BP2)].

Results

Test–retest variability was low in the outcome measure BP2 (on average 5.9%) and moderate in DVt′ (on average 13.2%). Regarding reproducibility, the outcome parameter BP2 showed an intra-class correlation coefficient (ICC) of 0.94 ± 0.1. For DVt′ the between-subject coefficient of variation (%CV) was similar to the within-subject %CV (around 10%), resulting in a poor ICC of 0.06 ± 0.2.

Conclusion

Our results suggest that quantification of [18F]CPFPX imaging is reproducible and reliable for PET studies of the cerebral A1AR. Among the outcome parameters the non-invasive measures were of superior test–retest stability over the invasive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol 2005;63:191–270.

    Article  PubMed  CAS  Google Scholar 

  2. Cunha RA, Ribeiro JA. ATP as a presynaptic modulator. Life Sci 2000;68:119–37.

    Article  PubMed  CAS  Google Scholar 

  3. Haas HL, Selbach O. Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 2000;362:375–81.

    Article  PubMed  CAS  Google Scholar 

  4. Ribeiro JA, Sebastiao AM, de Mendonca A. Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 2002;68:377–92.

    Article  PubMed  CAS  Google Scholar 

  5. Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schuller M, et al. Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[18F]fluoropropyl)-1-propylxanthine ([18F]CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem 2002;45:5150–6.

    Article  PubMed  CAS  Google Scholar 

  6. Bauer A, Holschbach MH, Cremer M, Weber S, Boy C, Shah NJ, et al. Evaluation of 18F-CPFPX, a novel adenosine A1 receptor ligand: in vitro autoradiography and high-resolution small animal PET. J Nucl Med 2003;44:1682–9.

    PubMed  CAS  Google Scholar 

  7. Noguchi J, Ishiwata K, Furuta R, Simada J, Kiyosawa M, Ishii S, et al. Evaluation of carbon-11 labeled KF15372 and its ethyl and methyl derivatives as a potential CNS adenosine A1 receptor ligand. Nucl Med Biol 1997;24:53–9.

    Article  PubMed  CAS  Google Scholar 

  8. Meyer PT, Bier D, Holschbach MH, Boy C, Olsson RA, Coenen HH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET. J Cereb Blood Flow Metab 2004;24:323–33.

    Article  PubMed  CAS  Google Scholar 

  9. Meyer PT, Elmenhorst D, Bier D, Holschbach MH, Matusch A, Coenen HH, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. Neuroimage 2005;24:1192–204.

    Article  PubMed  Google Scholar 

  10. Bauer A, Langen KJ, Bidmon H, Holschbach MH, Weber S, Olsson RA, et al. 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J Nucl Med 2005;46:450–4.

    PubMed  CAS  Google Scholar 

  11. Meyer PT, Elmenhorst D, Zilles K, Bauer A. Simplified quantification of cerebral A1 adenosine receptors using [18F]CPFPX and PET: analyses based on venous blood sampling. Synapse 2005;55:212–23.

    Article  PubMed  CAS  Google Scholar 

  12. Mandel HG. Update on caffeine consumption, disposition and action. Food Chem Toxicol 2002;40:1231–4.

    Article  PubMed  CAS  Google Scholar 

  13. Abi-Dargham A, Martinez D, Mawlawi O, Simpson N, Hwang DR, Slifstein M, et al. Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with [11C]NNC 112 in humans: validation and reproducibility. J Cereb Blood Flow Metab 2000;20:225–43.

    Article  PubMed  CAS  Google Scholar 

  14. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 1984;15:217–27.

    Article  PubMed  CAS  Google Scholar 

  15. Laruelle M, van Dyck C, Abi-Dargham A, Zea-Ponce Y, Zoghbi SS, Charney DS, et al. Compartmental modeling of iodine-123-iodobenzofuran binding to dopamine D2 receptors in healthy subjects. J Nucl Med 1994;35:743–54.

    PubMed  CAS  Google Scholar 

  16. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996;16:834–40.

    Article  PubMed  CAS  Google Scholar 

  17. Fastbom J, Pazos A, Probst A, Palacios JM. Adenosine A1 receptors in the human brain: a quantitative autoradiographic study. Neuroscience 1987;22:827–39.

    Article  PubMed  CAS  Google Scholar 

  18. Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 1997;27:322–35.

    Article  PubMed  CAS  Google Scholar 

  19. Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, et al. In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. Neuroimage 2003;19:1760–9.

    Article  PubMed  Google Scholar 

  20. Litton JE, Hall H, Pauli S. Saturation analysis in PET-analysis of errors due to imperfect reference regions. J Cereb Blood Flow Metab 1994;14:358–61.

    PubMed  CAS  Google Scholar 

  21. Millet P, Graf C, Buck A, Walder B, Ibanez V. Evaluation of the reference tissue models for PET and SPECT benzodiazepine binding parameters. Neuroimage 2002;17:928–42.

    Article  PubMed  Google Scholar 

  22. Meyer PT, Elmenhorst D, Holschbach MH, Bier D, Matusch A, Winz OH, et al. A1 adenosine receptor PET using [18F]CPFPX: displacement studies in humans. Neuroimage 2006; 32:1100–5.

    Article  PubMed  Google Scholar 

  23. Chan GL, Holden JE, Stoessl AJ, Doudet DJ, Wang Y, Dobko T, et al. Reproducibility of the distribution of carbon-11-SCH 23390, a dopamine D1 receptor tracer, in normal subjects. J Nucl Med 1998;39:792–7.

    PubMed  CAS  Google Scholar 

  24. Abi-Dargham A, Gandelman M, Zoghbi SS, Laruelle M, Baldwin RM, Randall P, et al. Reproducibility of SPECT measurement of benzodiazepine receptors in human brain with iodine-123-iomazenil. J Nucl Med 1995;36:167–75.

    PubMed  CAS  Google Scholar 

  25. Kirk RE. Experimental design: procedures for the behavioural sciences. Pacific Grove: Brooks/Cole; 1992.

  26. Bier D, Holschbach MH, Wutz W, Olsson RA, Coenen HH. Metabolism of the A1 adenosine receptor positron emission tomography ligand [18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ([18F]CPFPX) in rodents and humans. Drug Metab Dispos 2006;34:570–6.

    Article  PubMed  CAS  Google Scholar 

  27. Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy 1998;18:84–112.

    PubMed  CAS  Google Scholar 

  28. Chung WG, Kang JH, Park CS, Cho MH, Cha YN. Effect of age and smoking on in vivo CYP1A2, flavin-containing monooxygenase, and xanthine oxidase activities in Koreans: determination by caffeine metabolism. Clin Pharmacol Ther 2000;67:258–66.

    Article  PubMed  CAS  Google Scholar 

  29. Meerlo P, Roman V, Farkas E, Keijser JN, Nyakas C, Luiten PG. Ageing-related decline in adenosine A1 receptor binding in the rat brain: an autoradiographic study. J Neurosci Res 2004;78:742–8.

    Article  PubMed  CAS  Google Scholar 

  30. Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol 2004;73:379–96.

    Article  PubMed  CAS  Google Scholar 

  31. Johansson B, Ahlberg S, van der Ploeg I, Brene S, Lindefors N, Persson H, et al. Effect of long term caffeine treatment on A1 and A2 adenosine receptor binding and on mRNA levels in rat brain. Naunyn Schmiedebergs Arch Pharmacol 1993;347:407–14.

    Article  PubMed  CAS  Google Scholar 

  32. Dunwiddie TV. Adenosine and alcohol: is there a caffeine connection in the actions of ethanol? The “drunken” synapse: studies of alcohol-related disorders. 1999;119–33

  33. Smith GS, Price JC, Lopresti BJ, Huang Y, Simpson N, Holt D, et al. Test–retest variability of serotonin 5-HT2A receptor binding measured with positron emission tomography and [18F]altanserin in the human brain. Synapse 1998;30:380–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dirk Bier, Marcus H. Holschbach, Jürgen Burhenne and Walter E. Haefeli for the determination of plasma caffeine levels. Marlene Vögeling, Lutz Tellmann, Elisabeth Theelen, Suzanne Schaden, Hans Herzog and Markus Lang are gratefully acknowledged for excellent technical assistance and Johannes Ermert, Silke Grafmüller, Bettina Palm and Erika Wabbals for synthesis of [18F]CPFPX. This work was supported by grants from the Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren, the Deutsche Forschungsgemeinschaft and the German Ministry of Education and Research (Brain Imaging Center West, BICW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmenhorst, D., Meyer, P.T., Matusch, A. et al. Test–retest stability of cerebral A1 adenosine receptor quantification using [18F]CPFPX and PET. Eur J Nucl Med Mol Imaging 34, 1061–1070 (2007). https://doi.org/10.1007/s00259-006-0309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0309-x

Keywords

Navigation