Skip to main content
Log in

In vivo evaluation of 2′-deoxy-2′-[18F]fluoro-5-iodo-1-β-D-arabinofuranosyluracil ([18F]FIAU) and 2′-deoxy-2′-[18F]fluoro-5-ethyl-1-β-D-arabinofuranosyluracil ([18F]FEAU) as markers for suicide gene expression

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

FIAU and FEAU were evaluated in vitro and in vivo as markers for HSV1-tk gene expression.

Methods

In vitro and biodistribution studies were performed in wild type and transduced HT-29 cells using [14C]FIAU and [3H]FEAU. PET imaging was performed using [18F]FIAU and [18F]FEAU.

Results

In vitro uptake of [14C]FIAU in tk-positive cells was 39-fold, 49-fold, and 43-fold higher (p < 0.001) than in wild type cells at 30, 60, and 120 min, respectively. Uptake of [3H]FEAU in transduced cells was 46-fold, 62-fold, and 121-fold higher (p < 0.001) than in wild type cells at the same time points. In vivo uptake of [14C]FIAU at 2 h in HSV1-tk positive tumors was 15.48 ± 3.94, 6.7-fold higher (p < 0.001) than in wild type tumors. Uptake of [3H]FEAU in transduced tumors was 9.98 ± 1.99, 5.0-fold higher (p < 0.001) than in wild type tumors. Micro-PET images using [18F]FIAU and [18F]FEAU also showed very high uptake in HSV-tk tumors.

Conclusion

[18F]FIAU and [18F]FEAU appear to be potential PET imaging agents for gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Culver KW, Blaese RM. Gene therapy for cancer. Trends genet 1994;10:174–8.

    Article  PubMed  CAS  Google Scholar 

  2. Oldfield EH, Ram Zvi, Culver KW, Blease RM, DeVroom HL, Anderson WF. Clinical protocols: gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Hum Gene Ther 1993;4:39–69.

    PubMed  CAS  Google Scholar 

  3. Ram Z, Culver KW, Oshiro EM, Viola JJ, DeVroom HL, Otto E, et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector producing cells. Nat Med 1997;3:1354–61.

    Article  PubMed  CAS  Google Scholar 

  4. Urbain JC. Reporter genes and imagene. J Nucl Med 2001;42:106–9.

    PubMed  CAS  Google Scholar 

  5. Culver KW, Ram Zvi, Wallbridge S, Ishi H, Oldfield EH, Blaese RM. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992;256:1550–2.

    Article  PubMed  CAS  Google Scholar 

  6. Moolten FL, Wells JM, Heyman RA, Evans RM. Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene. Hum Gene Ther 1990;1:125–34.

    Article  PubMed  CAS  Google Scholar 

  7. Alauddin MM, Kundu R, Gordon EM, Conti PS. Evaluation of 9-(3-[18F]-fluoro-1-hydroxy-2-propoxymethyl)guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and expression in tumors. Nucl Med Biol 1999;26:371–6.

    Article  PubMed  CAS  Google Scholar 

  8. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA 1999;96:2333–8.

    Article  PubMed  CAS  Google Scholar 

  9. Tjuvajev JG, Chen SH, Joshi A, Joshi R, Guo ZS, Balatoni J, et al. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res 1999;59:5186–93.

    PubMed  CAS  Google Scholar 

  10. Haberkorn U, Altmann A, Morr I, Knopf K, Germann C, Haeckel R, et al. Monitoring gene therapy with herpes simplex virus thymidine kinase in hepatoma cells: uptake of specific substrates. J Nucl Med 1997;38:287–94.

    PubMed  CAS  Google Scholar 

  11. Jacobs A, Tjuvajev JG, Dubrovin M, Akhurst T, Balatoni J, Beattie B, et al. Positron emission tomography-based imaging of transgene expression mediated by replication conditional, oncolytic herpes simplex virus type-1 mutant vectors of cancer. Cancer Res 2001;61:2983–95.

    PubMed  CAS  Google Scholar 

  12. Tjuvajev JG, Stockhammar G, Desai R, Uehera H, Watanabe K, Gansbacher B, et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55:6126–32.

    PubMed  CAS  Google Scholar 

  13. Tjuvajev JG, Avril N, Oku T, Sasajima T, Miyagawa T, Joshi R, et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 1998;58:4333–41.

    PubMed  CAS  Google Scholar 

  14. Yu Y, Annala AJ, Barrio JR, Toyokuni T, Satyamurthy N, Namavari M, et al. Quantification of gene expression by imaging reporter gene expression in living animals. Nat Med 2000;6:933–7.

    Article  PubMed  CAS  Google Scholar 

  15. Barrio JR, Namavari M, Satyamurthy N, Srinivasan A, Herschman HR, Gambhir SS, et al. 8-[F-18]fluoroacyclovir: an in vivo probe for gene expression with PET. J Nucl Med 1996;37:193P.

    Google Scholar 

  16. Iyer M, Barrio JR, Namavari M, Bauer E, Satyamurthy N, Nguyen K, et al. 8-[18F]-fluoropenciclovir: an improved reporter probe for imaging HSV-tk reporter gene expression in vivo using PET. J Nucl Med 2001;42:96–105.

    PubMed  CAS  Google Scholar 

  17. Spadari S, Maga G, Focher F, Ciarrocchi G, Manservigi R, Arcamone F, et al. L-Thymidine is phosphorylated by herpes simplex virus type 1 thymidine kinase and inhibits viral growth. J Med Chem 1992;35:4214–20.

    Article  PubMed  CAS  Google Scholar 

  18. Watanabe KA, Richmond W, Hirota K, Lopez C, Fox JJ. Nucleosides 110. Synthesis and herpes virus activity of some 2′-fluoro-2′-deoxyarabinofuranosyl pyrimidine nucleosides. J Med Chem 1979;22:21–4.

    Article  PubMed  CAS  Google Scholar 

  19. Alauddin MM, Conti PS, Mazza SM, Hamzeh FH, Lever JR. Synthesis of 9-[(3-[18F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG): a potential imaging agent of viral infection and gene therapy using PET. Nucl Med Biol 1996;23:787–92.

    Article  PubMed  CAS  Google Scholar 

  20. Alauddin MM, Conti PS. Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethyl-butyl)guanine ([18F]-FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol 1998;25:175–80.

    Article  PubMed  CAS  Google Scholar 

  21. Alauddin MM, Shahinian A, Gordon EM, Bading JR, Conti PS. Preclinical evaluation of the penciclovir analog 9-(4-[18F]-fluoro-3-hydroxymethyl-butyl)guanine ([18F]-FHBG for in vivo measurement of suicide gene expression with PET. J Nucl Med 2001;42:1682–90.

    PubMed  CAS  Google Scholar 

  22. Barrio JR, Namavari M, Phelps ME, Satyamurthy N. Regioselective fluorination of substituted guanines with F2: a facile entry for 8-fluorguanine derivatives. J Org Chem 1996;61:6084–5.

    Article  PubMed  CAS  Google Scholar 

  23. Namavari M, Barrio JR, Toyokumi T, Gambhir SS, Cherry SR, Herschman HR, et al. Synthesis of 8-[18F]-fluoroguanine derivatives: in vivo probes for imaging gene expression with PET. Nucl Med Biol 2000;27:157–62.

    Article  PubMed  CAS  Google Scholar 

  24. Alauddin MM, Shahinian A, Gordon EM, Conti PS. Evaluation of 2′-deoxy-2′-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU) as a potential gene imaging agent for HSV-tk expression in vivo. Mol Imaging 2002;1:74–81.

    Article  PubMed  CAS  Google Scholar 

  25. Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, et al. Direct comparison of HSV-tk PET imaging probes: FIAU, FHPG, FHBG. J Nucl Med 2002;43:1072–83.

    PubMed  Google Scholar 

  26. Min JJ, Iyer M, Gambhir SS. Comparison of [18F]FHBG and [14C]FIAU for imaging HSV1-tk reporter gene expression: adenoviral infection vs. stable transfection. Eur J Nucl Med Mol Imaging 2003;30:1547–60.

    Article  PubMed  CAS  Google Scholar 

  27. Alauddin MM, Fissekis JD, Conti PS. Synthesis of [18F]-labeled 2′-deoxy-2′-fluoro-5-methyl-1-β-D-arabinofuranosyluracil ([18F]-FMAU). J Labelled Compd Radiopharm 2002;45:583–90.

    Article  CAS  Google Scholar 

  28. Alauddin MM, Fissekis JD, Conti PS. A general synthesis of 2′-deoxy-2′-[18F]fluoro-5-methyl-1-β-D-arabinofuranosyluracil and its 5-substituted nucleosides. J Labelled Compd Radiopharm 2003;46:285–9.

    Article  CAS  Google Scholar 

  29. Mangner TJ, Klecker RW, Anderson L, Shields AF. Synthesis of 2′-deoxy-2′-[18F]fluoro-β-D-arabinofuranosyl nucleosides ([18F]-FAU), ([18F]-FMAU), ([18F]-FBAU) and ([18F]-FIAU), as potential PET agents for imaging cellular proliferation. Nucl Med Biol 2003;30:215–24.

    Article  PubMed  CAS  Google Scholar 

  30. Watanabe KA, Su T-L, Reichman U, Greenberg N, Lopez C, Fox JJ. Nucleosides 129. Synthesis of antiviral nucleosides: 5-Alkenyl 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)uracils. J Med Chem 1994;27:91–4.

    Article  Google Scholar 

  31. Chou TC, Kong XB, Fanucchi MP, Cheng YC, Takahashi K, Watanabe KA, et al. Synthesis and biological effects of 2′-fluoro-5-ethyl-1-β-D-arabinofuranosyluracil. Antimicrob Agents Chemother 1987;31:1355–8.

    PubMed  CAS  Google Scholar 

  32. Lyons RM, Forry-Schaudies S, Otto E, Wey C, Patilkoota V, Kaloss M, et al. An improved retroviral vector encoding the herpes simplex virus thymidine kinase gene increasing antitumor efficacy in vivo. Cancer Gene Ther 1995;2:273–80.

    PubMed  CAS  Google Scholar 

  33. Yang L, Hwang R, Chiang Y, Gordon EM, Anderson WF, Parekh D. Mechanism for ganciclovir resistance in gastrointestinal tumor cells transduced with retroviral vector containing the herpes simplex virus thymidine kinase gene. Clin Cancer Res 1998;4:731–41.

    PubMed  CAS  Google Scholar 

  34. Klecker RW, Kakti AG, Collins JM. Toxicity, metabolism, DNA incorporation with lack of repair, and lactate production for 1-(2′-fluoro-2′-deoxy-β-D-arabinofuranosyl)-5-iodouracil in U937 and MOLT-4 cells. Mol Pharmacol 1994;46:1204–9.

    PubMed  CAS  Google Scholar 

  35. Alauddin MM, Shahinian A, Park R, Tohmi M, Fissekis JD, Conti PS. Synthesis and evaluation of [18F]-FFAU as a potential PET imaging agent for gene expression. J Nucl Med 2004;45:2063–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Cancer Institute Grants CA 72896 and P20 CA86532.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mian M. Alauddin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alauddin, M.M., Shahinian, A., Park, R. et al. In vivo evaluation of 2′-deoxy-2′-[18F]fluoro-5-iodo-1-β-D-arabinofuranosyluracil ([18F]FIAU) and 2′-deoxy-2′-[18F]fluoro-5-ethyl-1-β-D-arabinofuranosyluracil ([18F]FEAU) as markers for suicide gene expression. Eur J Nucl Med Mol Imaging 34, 822–829 (2007). https://doi.org/10.1007/s00259-006-0305-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0305-1

Keywords

Navigation