Skip to main content
Log in

1-[11C]-acetate PET imaging in head and neck cancer—a comparison with 18F-FDG-PET: implications for staging and radiotherapy planning

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the feasibility of using 1-[11C]-acetate positron emission tomography (ACE-PET) to detect and delineate the gross tumour volume of head and neck cancer before radiotherapy, and to compare the results with those obtained using 18F-fluoro-2-deoxy-D-glucose (FDG) PET.

Methods

Ten patients with histologically verified squamous cell carcinoma were investigated by FDG-PET and dynamic ACE-PET prior to radiotherapy. The two scans were performed on the same day or on consecutive days, except in one patient in whom they were done 5 days apart. Diagnostic CT or MRI was performed in all patients. The image data sets were analysed both visually and semi-quantitatively. All primary tumours and metastases were delineated automatically by using the 50% threshold of maximum radioactivity corrected for background. The mean standardised uptake value (SUV) and the tumour volumes were evaluated and compared.

Results

All ten primary tumours were detected by ACE-PET, while nine primaries were detected by FDG-PET and CT and/or MRI. The ACE SUV tended to be lower than the FDG SUV (5.3±2.7 vs 9.6±7.0, p=0.07). The tumour volumes delineated with ACE were on average 51% larger than the FDG volumes (p<0.05). ACE-PET identified 20/21 lymph node metastases, while only 13/21 lesions were detected by FDG-PET and 16/21 lesions by CT or MRI.

Conclusion

ACE-PET appears promising for the staging of head and neck cancer. The biological information provided by both FDG and ACE must be carefully validated before it can be used in clinical routine for radiation treatment planning. More studies are needed to evaluate the differences in volumes and to confirm the clinical potential of both FDG and ACE-PET, especially in radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Panje WR, Namon AJ, Vokes E, Haraf DJ, Weichselbaum RR. Surgical management of the head and neck cancer patient following concomitant multimodality therapy. Laryngoscope 1995;105:97–101.

    Article  CAS  PubMed  Google Scholar 

  2. Vermeersch H, Loose D, Ham H, Otte A, Van de Wiele C. Nuclear medicine imaging for the assessment of primary and recurrent head and neck carcinoma using routinely available tracers. Eur J Nucl Med Mol Imaging 2003;30:1689–1700.

    Article  PubMed  Google Scholar 

  3. Greven KM. Positron-emission tomography for head and neck cancer. Semin Radiat Oncol 2004;14:121–9.

    Article  PubMed  Google Scholar 

  4. Schwartz DL, Ford EC, Rajendran J, Yueh B, Coltrera MD, Virgin J, et al. FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation. Head Neck 2005;27:478–87.

    Article  PubMed  Google Scholar 

  5. Avril NE, Weber WA. Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am 2005;43:189–204.

    Article  PubMed  Google Scholar 

  6. Paulino AC, Johnstone PA. FDG-PET in radiotherapy treatment planning: Pandora’s box? Int J Radiat Oncol Biol Phys 2004;59:4–5.

    Article  PubMed  Google Scholar 

  7. Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991;32:623–48.

    CAS  PubMed  Google Scholar 

  8. Goerres GW, Von Schulthess GK, Hany TF. Positron emission tomography and PET CT of the head and neck: FDG uptake in normal anatomy, in benign lesions, and in changes resulting from treatment. AJR Am J Roentgenol 2002;179:1337–43.

    Article  PubMed  Google Scholar 

  9. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 2006;47:885–95.

    PubMed  Google Scholar 

  10. Higashi K, Ueda Y, Matsunari I, Kodama Y, Ikeda R, Miura K, et al. 11C-acetate PET imaging of lung cancer: comparison with 18F-FDG PET and 99mTc-MIBI SPET. Eur J Nucl Med Mol Imaging 2004;31:13–21.

    Article  PubMed  Google Scholar 

  11. Ho CL, Yu SC, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 2003;44:213–21.

    PubMed  Google Scholar 

  12. Fricke E, Machtens S, Hofmann M, van den Hoff J, Bergh S, Brunkhorst T, et al. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 2003;30:607–11.

    Article  CAS  PubMed  Google Scholar 

  13. Shreve P, Chiao PC, Humes HD, Schwaiger M, Gross MD. Carbon-11-acetate PET imaging in renal disease. J Nucl Med 1995;36:1595–601.

    CAS  PubMed  Google Scholar 

  14. Liu RS, Chang CP, Chu LS, Chu YK, Hsieh HJ, Chang CW, et al. PET imaging of brain astrocytoma with 1-11C-acetate. Eur J Nucl Med Mol Imaging 2006;33:420–7.

    Article  PubMed  Google Scholar 

  15. Sandblom G, Sorensen J, Lundin N, Haggman M, Malmstrom PU. Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology 2006;67:996–1000.

    Article  PubMed  Google Scholar 

  16. Yeh SH, Liu RS, Wu LC, Yen SH, Chang CW, Chen KY. 11C-acetate clearance in nasopharyngeal carcinoma. Nucl Med Commun 1999;20:131–4.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshimoto M, Waki A, Yonekura Y, Sadato N, Murata T, Omata N, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 2001;28:117–22.

    Article  CAS  PubMed  Google Scholar 

  18. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.

    PubMed  Google Scholar 

  19. van Baardwijk A, Baumert BG, Bosmans G, van Kroonenburgh M, Stroobants S, Gregoire V, et al. The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev 2006;32:245–60.

    Article  PubMed  Google Scholar 

  20. Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71:267–73.

    Article  CAS  PubMed  Google Scholar 

  21. Grosu AL, Piert M, Weber WA, Jeremic B, Picchio M, Schratzenstaller U, et al. Positron emission tomography for radiation treatment planning. Strahlenther Onkol 2005;181:483–99.

    Article  PubMed  Google Scholar 

  22. Nishioka T, Shiga T, Shirato H, Tsukamoto E, Tsuchiya K, Kato T, et al. Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 2002;53:1051–7.

    Article  PubMed  Google Scholar 

  23. Wang D, Schultz CJ, Jursinic PA, Bialkowski M, Zhu XR, Brown WD, et al. Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma. Int J Radiat Oncol Biol Phys 2006;65:143–51.

    Article  PubMed  Google Scholar 

  24. Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999;44:593–7.

    Article  CAS  PubMed  Google Scholar 

  25. Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004;60:1272–82.

    Article  PubMed  Google Scholar 

  26. Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of 18FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 2002;52:339–50.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the staff at Uppsala Imanet PET Center for assistance in performing the studies. This work was supported by grants from Uppsala University Amersham PET Research Fund, Laryngfonden and Umeå University Lion’s Cancer Research Foundation, Sweden. None of the authors have any financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aijun Sun.

Additional information

The first two authors contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, A., Sörensen, J., Karlsson, M. et al. 1-[11C]-acetate PET imaging in head and neck cancer—a comparison with 18F-FDG-PET: implications for staging and radiotherapy planning. Eur J Nucl Med Mol Imaging 34, 651–657 (2007). https://doi.org/10.1007/s00259-006-0298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0298-9

Keywords

Navigation